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ABSTRACT 
A fundamental debate in cognitive neuroscience concerns how conceptual 

knowledge is represented in the brain.  Over the past decade, cognitive theorists have 

adopted explanations that suggest cognition is rooted in perception and action.  This is 

called the embodiment hypothesis.  Theories of conceptual representation differ in the 

degree to which representations are embodied, from those which suggest conceptual 

representation requires no involvement of sensory and motor systems to those which 

suggest it is entirely dependent upon them.  This work investigated how the brain 

represents concepts that are defined by their visual and haptic features using novel 

multivariate approaches to the analysis of functional magnetic resonance imaging (fMRI) 

data. 

A behavioral study replicated a perceptual phenomenon, known as the tactile 

disadvantage, demonstrating that that verifying the properties of concepts with haptic 

features takes significantly longer than verifying the properties of concepts with visual 

features.  This study suggested that processing the perceptual properties of concepts 

likely recruits the same processes involved in perception.  A neuroimaging study using 

the same paradigm showed that processing concepts with visual and haptic features elicits 

activity in bimodal object-selective regions, such as the fusiform gyrus (FG) and the 

lateral occipitotemporal cortex (LOC).  Multivariate pattern analysis (MVPA) was 

successful at identifying whether a concept had perceptual or abstract features from 

patterns of brain activity located in functionally-defined object-selective and general 
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perceptual regions in addition to the whole brain.  The conceptual representation was also 

consistent across participants.  Finally, the functional networks for verifying the 

properties of concepts with visual and haptic features were highly overlapping but 

showed differing patterns of connectivity with the occipitotemporal cortex across people.     

Several conclusions can be drawn from this work, which provide insight into the 

nature of the neural representation of concepts with perceptual features.  The neural 

representation of concepts with visual and haptic features involves brain regions which 

underlie general visual and haptic perception as well visual and haptic perception of 

objects.  These brain regions interact differently based on the type of perceptual feature a 

concept possesses.  Additionally, the neural representation of concepts with visual and 

haptic features is distributed across the whole brain and is consistent across people.  The 

results of this work provide partial support for weak and strong embodiment theories, but 

further studies are necessary to determine whether sensory systems are required for 

conceptual representation. 
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CHAPTER 1 
 

INTRODUCTION 

A fundamental debate in cognitive neuroscience concerns how conceptual 

knowledge is represented in the brain.  Concepts are part and parcel of human cognition, 

as they serve a central role in various cognitive functions including thought and 

reasoning, language comprehension and production, action planning, and object 

recognition (Humphreys, Riddoch, & Quinlan, 1988; Kiefer & Pulvermüller, 2012; 

Solomon, Medin, & Lynch, 1999).  Concepts are essential for human information 

processing, because they provide a link between action and perception.  That is, they help 

to bridge the information gleaned from the environment through perception and the 

information dispersed to the environment through action (Kiefer & Pulvermüller, 2012).   

A concept is a mental representation that integrates an individual’s past sensory 

and motor experiences with his environment in order to categorize and provide 

information.  For example, the concept “car” might include that a car is a mode of 

transportation for carrying people, has four wheels, seats, and must be steered with a 

wheel by a driver.  While an individual encounters a variety of cars in his lifetime, the 

concept of “car” is a generalization across all the cars he has experienced.  This aids the 

individual in identifying and responding appropriately to future instances of cars.   

While most agree what constitutes a concept, how concepts are represented 

remains an important question.  Prior to the Twentieth Century cognitive theorists 



www.manaraa.com

 

2 

suggested that cognition was grounded in perception.  That is, conceptual knowledge was 

believed to be represented in the same manner as mental images.  Following the cognitive 

revolution, advancements in computer science, artificial intelligence, and statistics 

influenced modern theorists to turn away from theories of image-based cognition and to 

adopt theories of cognition that were inherently non-perceptual.  These theories proposed 

that knowledge is represented in cognitive systems as abstract symbols that reside 

separately from perceptual systems (Barsalou, 1999).   

Over the past decade, cognitive theorists have returned to favor explanations that 

suggest cognition is rooted in perception and action.  This is called the embodiment 

hypothesis.  Theories of conceptual representation differ in the degree to which 

representations are embodied.  They fall along a continuum from “unembodied” to 

“strongly embodied” (see Meteyard, Cuadrado, Bahrami, & Vigliocco, 2012 for review).  

This chapter will review embodied theories, characterizing the degree to which sensory 

and motor representations are necessary in conceptual representation, predictions made 

by such theories, and evidence for and against them.    

1.1 THEORIES OF EMBODIED COGNITION 

1.1.1 Unembodied/secondary embodiment theories 

Unembodied theories suggest that sensory and motor information is irrelevant for 

conceptual representation.  That is, conceptual representations are entirely amodal.  These 

unembodied theories propose that knowledge is represented in cognitive systems as 

abstract symbols that reside independently of perceptual systems (Barsalou, 1999; 

Meteyard et al., 2012).  Additionally, these theories suggest that conceptual 

representations are formed by transforming, or transducing, the perceptual state elicited 



www.manaraa.com

 

3 

by the experience of the concept’s referent into an entirely new non-perceptual language, 

and the resulting abstract symbols are subsequently stored in long-term memory with 

arbitrary links to the precipitating perceptual state (Barsalou, 1999; Barsalou et al., 1993).  

Furthermore, there is no interaction between semantic information and sensory-motor 

systems.  During semantic tasks, any activation of sensory-motor information occurs 

through an indirect route, such as when working memory processes engage sensory and 

motor processing (Meteyard et al., 2012).   

According to unembodied theories, semantic processing is thought to occur in a 

conceptual “hub”, which serves as a center for amodal conceptual representation (Kiefer 

& Pulvermüller, 2012).  These theories predict that semantic processing should remain 

intact when sensory or motor systems are damaged or impaired.  Only damage to the 

conceptual hub would result in deficits of semantic processing.             

Secondary embodiment theories also propose that conceptual representations are 

amodal.  They differ from unembodied theories, because they allow for non-arbitrary 

mappings between semantic representations and sensory and motor information.  Sensory 

and motor information contribute to conceptual representations but are not essential.  

Mahon and Caramazza (2008) describe the role of sensory and motor information as 

“coloring”, meaning that this information can enhance concepts but not change the 

“essence” of a concept (Pulvermüller, in press).  It is the amodal system that gives 

concepts their meanings rather than the sensory and motor systems.   Secondary 

embodiment theories would predict poorer conceptual representation with damage to 

sensory and motor systems, but semantic processing would remain largely intact.  In 

imaging studies, secondary embodiment theories would predict activation across various 
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semantic tasks in regions outside of sensory and motor areas that do not correspond to 

task-related control processes (Meteyard et al., 2012).  

Neuropsychological research in patients and healthy participants provides support 

for embodied theories of cognition.  Patients who exhibit Semantic Dementia, 

characterized by a loss of conceptual knowledge across all conceptual domains, suffer 

from a neurodegenerative disease which attacks the temporal poles and surrounding 

areas.  This condition provides evidence for amodal conceptual representation, because 

patients show deficits for concepts across semantic categories and feature types while 

sensory and motor systems remain intact.    Additionally, stimulation of the temporal 

poles using transcranial magnetic stimulation (TMS) results in poor performance on 

various semantic tasks in healthy participants (Pobric, Lambon-Ralph, & Jeffries, 2009).  

As a result, the anterior temporal cortex has been proposed to be a hub for conceptual 

representation. 

Pulvermüller (2013) argues that unembodied theories cannot completely explain 

conceptual representation, because grounding is paramount for semantics.  As 

demonstrated by the classic thought experiment “Chinese Room” by Searle (1980), given 

rules for manipulating and combining the symbols of an unknown language, an 

individual can produce appropriate responses without understanding their meanings.  The 

individual will only understand the meaning of the language once the symbols become 

grounded in perceptual and motor experiences.  This implies that conceptual 

representation must involve interaction between amodal systems and sensory and motor 

systems.  Given that amodal systems and sensory motor systems interact and exchange 

information, it is not prudent to argue that sensory and motor information is non-essential 
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for conceptual representation.  Pulvermüller (in press, p. 3) argues this by providing the 

following analogy: 

“It would obviously be wrong to state that the thrust pushing an airplane occurs in 

one of its three engines because two of them can optionally be switched off.  

There is reason to say that, if all three are at work, the airplane’s thrust in fact 

occurs in all three of them – even though one alone may do the job.”        

Although amodal systems may contribute to the representation of concepts, sensory and 

motor systems must interact and provide information.  The interactive nature of the two 

systems precludes amodal systems from providing the “essence” or meaning of a 

concept.   

Based on the literature, it seems that umembodied and secondary embodiment 

theories of cognition cannot fully account for how the brain represents concepts.  

Theories accounting for a greater role of sensory and motor systems are necessary to 

explain how concepts are represented. 

1.1.2 Weak/strong embodiment theories 

Weak and strong embodiment theories propose that conceptual representations are 

modal and that sensory and motor information is essential, not secondary, to conceptual 

representation.  Concepts are represented in distributed neural networks that overlap with 

the perceptual systems used to gain knowledge about a concept’s referent (Barsalou, 

1999, 2003; Markman & Dietrich, 2000).   

Weak and strong embodiment theories differ in the degree to which conceptual 

representations are dependent on sensory and motor systems as well as the nature of the 

interaction between the two.  Weak embodiment theories suggest that secondary sensory 
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and motor regions are necessary for conceptual representation and that semantic 

information mediates early sensory and motor processing (Meteyard et al., 2012).  Strong 

embodiment theories propose that conceptual representations are entirely dependent on 

primary sensory and motor regions and that semantic information directly modulates 

sensory and motor processing in order to fully simulate a concept (Meteyard et al., 2012).  

One of the most comprehensive embodied theories is perceptual symbol systems 

proposed by Barsalou (1999).  This theory can be seen as weakly or strongly embodied 

based on whether one interprets a full simulation of a concept as necessary for conceptual 

representation (Meteyard et al., 2012).  The theory of perceptual symbol systems 

proposes that concepts are represented as symbols that are records of the neural activation 

that occurs when perceiving the referent of the concept.  These symbols can be 

consciously or unconsciously processed, where conscious processing produces mental 

imagery of the concept’s referent.  While the perceptual symbol is a record of the neural 

activation occurring at the time of perception, it is not a complete record of the entire 

cognitive state.  The perceptual symbol captures a “schematic,” or general representation, 

of the original cognitive state (Barsalou, 1999).  Perceptual symbols are multimodal, in 

that they capture the perceptual experience of the referent of a concept through all sense 

modalities.  When perceiving an apple, for example, perceptual symbols for the visual 

appearance, smell, taste, hand and mouth feel, and crunching sound during eating are 

formed and stored in their corresponding modality-specific brain regions.  In addition to 

the five senses, symbols capture information about the proprioceptive and introspective 

experience.  In the example of the apple, perceptual symbols of the emotional experience 
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of eating an apple and the motor movements associated with grasping and eating the 

apple are also formed and stored in their respective brain regions. 

Perceptual symbol systems propose that symbols are a record of the neural activity 

that occurs when perceiving the referent of a concept, but how might these records be 

formed?  The sensorimotor theory of conceptual processing suggests that sensory and 

motor features become attached to a symbol by correlation (Humphreys & Forde, 2001; 

Warrington, 1984).  The neural representation of a concept with perceptual features 

becomes mapped onto neural activation in the perceptual regions originally active when 

experiencing the referent of a concept.  The sensorimotor theory has also been used to 

explain how concepts and their meanings become linked to the word stimuli used to 

describe them.  Pulvermüller (2001) proposes that language is represented by functional 

webs within the cortex that link word form with word meaning.  These functional webs 

are formed and strengthened by a Hebbian learning process in which neurons firing in 

response to the perceptual and motor features of the word’s referent become linked to 

neurons firing in response to word form.  Thus, the functional web representing a single 

word includes both representations of its linguistic form as well as its perceptual and 

motor features.  More recent evidence has elucidated the mechanism by which activation 

in the perceptual and motor regions becomes linked to neural activation in response to 

word form.  Semantic-conceptual binding sites within the brain serve to bind perceptual, 

motor, and language-related information into one conceptual representation 

(Pulvermüller, 2005).  Mirror neurons in the inferior frontal gyrus have been implicated 

in binding motor information and similar perceptual binding sites are hypothesized (see 

Aziz-Zadeh & Damasio, 2008 for review).   
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Once concepts are encoded, further conceptual processing requires that perceptual 

symbols be retrieved from memory.  Unembodied theories propose that the perceptual 

state elicited by the experience of the concept’s referent is transduced into an entirely 

new non-perceptual language.  Subsequent conceptual processing involves retrieving a 

stored description of the concept in this non-perceptual language for use in cognitive 

processing, much like the way computer systems operate.  In contrast, embodied theories, 

such as perceptual symbol systems, propose that the original cognitive state experienced 

during encoding of a concept becomes partially re-enacted when the concept is retrieved 

(Barsalou, 2003).  The re-enactment of neural activity occurs in the sensory association 

areas of the modalities in which the referent of the concept was experienced.  When the 

re-enactment is conscious, mental imagery occurs; however, conceptual processing is 

often unconscious and involves no mental imagery.  A similar account of how concepts 

are processed has been proposed in the domain of language. The Language and Situated 

Simulation (LASS) theory proposes that word stimuli first activate linguistic areas 

needed to process word form and secondarily activate a “situated simulation” to represent 

word meaning.  This simulation occurs in the perceptual, action-related and emotional 

neural systems activated when interacting with the referent of the word (Simmons, 

Hamann, Harenski, Hu , & Barsalou, 2008). 

1.1.2.1 Evidence for weak/strong embodiment theories in language 

Studies investigating how the brain processes words and sentences with 

perceptual and motor features have been implemented using perceptual features from all 

five sense modalities as well as actions involving multiple parts of the body to provide 

support for and against weak and strong embodiment theories.  This section will present 
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the major findings of studies utilizing concepts containing information about the five 

sense modalities and motor activity. 

1.1.2.2 Vision 

The most often studied sense modality is vision, reflecting the overall importance 

and rich understanding of this sense modality.  Of the studies using the visual modality, 

the perceptual feature of color has been well-studied, mainly due to its unimodal nature.  

Color is one of the few visual features perceived by vision alone.  Pulvermüller and Hauk 

(2006) investigated how the brain processes words that describe the color and shape of 

objects during a passive reading task.  This study demonstrated that color words elicit 

activation in the parahippocampus, and shape-related words elicit activation in the medial 

temporal gyrus, the fusiform gyrus, the inferior and middle frontal cortex, and the 

prefrontal cortex.  The authors attributed activation of the parahippocampus to feature 

conjunction of color and activation of the fusiform gyrus to feature conjunction of form.  

In a similar study, Martin, Haxby, Lalonde, Wiggs, and Ungerleider (1995) demonstrated 

that generating color words produces activation in the ventral temporal lobe, which is 

anterior to a region involved in color perception.  Tan et al. (2008) demonstrated that 

naming hard-to-name and easy-to-name color patches affects differently neural patterns 

in the visual cortex and bilateral frontal gyrus, which are activated during color 

perception.  While all three studies implicate different regions in processing color-related 

words, they all agree that conceptual representation of color relies on perceptual areas.  

The inconsistency of brain regions may be attributed to the variability in task demands.  

Gerlach (2007) conducted a meta-analysis of fMRI studies comparing visual processing 

of natural objects and artifacts.  Due to large variability in task demands, a lack of 



www.manaraa.com

 

10 

consistent activation within categories suggests that activation is widely distributed and 

not organized by category.  The author proposes that natural objects and artifacts are 

organized according to their sensory and functional features rather than category.   

Conceptual representation studies have also been implemented with sentences that 

elicit visual imagery.  In a study comparing sentences with high and low visual imagery, 

Just, Newman, Keller, McEleney, and Carpenter (2004) suggests that comprehension of 

sentences with high visual imagery produces greater activation in the intraparietal sulcus 

than sentences with low visual imagery.  This region has been implicated previously in 

spatial processing.  Based on subsequent studies, Just (2008) concludes that perceptual 

representations are not always necessary for sentence processing but become activated 

when perceptual information is useful for the task at hand.  In contrast to studies of color 

concepts, these studies propose that task demands mediate whether perceptual 

representations become activated and that conceptual representation does not require 

perceptual systems.  Seemingly, these studies provide evidence that weak/strong 

embodiment theories of cognition do not fully explain how concepts are represented in 

the brain, as amodal systems may be fully able to represent concepts. 

Taken together, studies using concepts with visual features provide mounting 

evidence for weak embodiment theories.  Overall, these studies have found that 

processing concepts with visual features involves brain regions anterior to primary visual 

areas, which is consistent with the predictions of weak embodiment theories. 

1.1.2.3 Haptics 

 Similar studies have investigated how the brain represents concepts that contain 

haptic information.  Due to the overlap between the visual and haptic systems, these 
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studies compare concepts with visual features to concepts with haptic features.  One way 

to illustrate that conceptual representations rely on perceptual systems is to demonstrate a 

known perceptual phenomena in conceptual processing.  Connell and Lynott (2010) 

replicated the perceptual phenomenon known as the “tactile disadvantage” for identifying 

the haptic properties of words in comparison to other perceptual properties.  This study 

suggests that words with haptic properties are processed in a similar manner to objects 

with haptic properties.  In contrast, Newman, Klatzky, Lederman, and Just (2005) found 

mixed results concerning similarity judgments of visual words describing shape and 

haptic words describing texture.  Shape-similarity judgments activated the IPS, 

implicated in spatial processing, while texture-similarity judgments activated the inferior 

extrastriate.  The inferior extrastriate has been implicated in semantic processing, which 

suggests that semantic representation of haptic words does not rely on perceptual 

systems.  It should be noted that Newman et al. (2005) classifies shape as a visual feature 

only, when shape is perceived by the visual and haptic systems.  This oversight may 

explain why regions involved in haptic perception of shape were not found when making 

texture-similarity judgments of haptic words.  Finally, Goldberg, Perfetti, and Schneider 

(2006) demonstrates that retrieval of perceptual knowledge relies on the sensory brain 

regions necessary for obtaining that knowledge.  Haptic knowledge retrieval activated 

somatosensory, motor and premotor areas, while visual knowledge retrieval activated the 

left ventral temporal lobe and superior parietal lobe.  

 Neuroimaging studies using concepts with haptic features provide evidence for 

both weak and strong embodiment theories.  One study found that processing concepts 

with haptic features involves somatosensory association areas, which is consistent with 
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the predictions of weak embodiment theories.  Another study implicated primary 

somatosensory and motor areas in processing concepts with haptic features, which is 

consistent with a full conceptual simulation predicted by strong embodiment theories. 

1.1.2.4 Other senses 

Fewer studies have investigated how the brain represents concepts containing 

perceptual information about the smell, taste and sound of objects.  In the case of 

olfaction, Gonzalez et al. (2006) showed that reading words with strong associations to 

odor, such as “cinnamon” or “garlic,” elicits activation in the primary olfactory cortex, 

including the piriform cortex and amygdala.  In a study designed to investigate the neural 

representation of concepts with acoustic features, Kiefer, Sim, Herrnberger, Grothe, and 

Hoenig (2008) demonstrated that words with acoustic conceptual features elicited activity 

in parts of the auditory association cortex, including the left posterior superior temporal 

gyrus and middle temporal gyrus.  These same regions were activated when listening to 

corresponding real sounds.  Similarly, verification of sound knowledge elicits activation 

in the left superior temporal sulcus (Goldberg et al., 2006).  In the case of the gustatory 

modality, verification of taste knowledge elicits activation in the left orbitofrontal cortex 

(Goldberg et al., 2006), which is involved in representing taste and smell and becomes 

active when viewing pictures of food (Simmons, Martin, & Barsalou, 2005).  

Neuroimaging studies using concepts with olfactory and gustatory features 

provide evidence for both weak and strong embodiment theories.  One study found that 

processing concepts with gustatory features involves gustatory association areas, which is 

consistent with the predictions of weak embodiment theories.  Another study implicated 
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primary olfactory areas in processing concepts with olfactory features, which is 

consistent with a full conceptual simulation predicted by strong embodiment theories. 

1.1.2.5 Motor 

 Embodied theories of cognition propose that conceptual representations not only 

rely on perceptual systems but also rely on motor systems.  Numerous studies have 

investigated how action concepts that involve bodily movement are represented in the 

brain.  Desai, Binder, Conant, and Seidenberg (2009) demonstrated that comprehension 

of sentences describing an action involving hand and arm movements activates the 

inferior postcentral cortex, which is involved in hand movement control and planning.  

Similarly, several studies have shown that reading or listening to words and phrases about 

actions involving the body activate the corresponding region of the premotor cortex 

(Aziz-Zadeh & Damasio, 2008; Hauk, Davis, Kherif, & Pulvermüller, 2008; Tettamanti 

et al., 2005).  Boronat et al. (2005) demonstrated that judging whether two objects are 

manipulated in the same way activates the left inferior parietal lobe when viewing object 

names or pictures.  Hoenig, Sim, Bochev, Herrnberger, and Kiefer (2008) investigated 

conceptual flexibility of visual- and action-related attributes of artifactual and natural 

word categories to determine whether the conceptual attributes of words depends upon 

context or situation.  They found that when probed with a non-dominant perceptual 

attribute, such as pairing a visual feature with an action-related word, activation in the 

modality-specific region was increased.  Additionally, activation in the dominant 

modality always occurred even when probing with a non-dominant attribute.  This 

suggests that conceptual representations are activated differently based on context. 
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 Collectively, these neuroimaging studies utilizing concepts with motor features 

provide evidence for weak embodiment theories of cognition.  These studies implicated 

motor association areas in processing concepts with motor features, which is consistent 

with weak embodiment theories.  Studies investigating concepts with motor features also 

provide evidence for strong embodiment theories of cognition.  Pulvermüller, Hauk, 

Nikulin, and Ilmoniemi (2005) used TMS to stimulate the hand and foot regions of the 

motor cortex while participants performed a recognition task with arm- and leg-related 

action words.  Participants performed significantly better on the recognition task when 

the corresponding region of the motor cortex was stimulated.   This study demonstrated 

that stimulation of the motor cortex directly influences semantic processing of concepts.  

Similarly, Buccino et al. (2005) found that passively listening to sentences about hand 

and foot actions results in motor evoked potentials (MEPs) in the hand and foot muscles 

respectively.  In this study, semantic processing modulated activity within the motor 

cortex and muscles.  Collectively, these studies indicate that semantic systems and motor 

systems are able to modulate one another and support strong embodiment theories.   

The previous neuroimaging studies investigating the neural representation of 

concepts with perceptual and motor features have all provided evidence to support 

weak/strong embodiment theories of cognition based on the findings that conceptual 

processing activates regions that underlie perception and action; however, they do not 

demonstrate that these regions are required.  Lesion studies are instrumental for testing 

hypotheses of embodied cognition, as they allow for making inferences as to whether an 

anatomical region is required for performing a particular task.  If a region is required for 

a particular task, patients with lesions in that region will show severe deficits in 
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performing that task.  Several studies have tested the embodiment hypothesis with 

patients displaying lesions in sensory and motor areas to determine whether these regions 

are required for representing concepts.  Patients displaying damage to visual or auditory 

association areas show greater deficits in processing words that are visual or sound-

related respectively (Neininger & Pulvermüller, 2006; Trumpp et al., 2013).  Patients 

with motor deficits due to amyotrophic lateral sclerosis (ALS), a neurodegenerative 

disorder affecting the motor cortex, show more severe deficits in processing action words 

than object-related nouns.  These studies suggest that sensory and motor regions are 

required for representing concepts with perceptual and motor features.  In contrast, 

Arevalo et al. (2012) demonstrates that lesions to sensorimotor areas are not sufficient for 

producing deficits in processing motor-associated words, suggesting that these regions 

are required only when motor imagery must be used to represent a concept.  Chattergee 

(2010) speculates that the inconsistencies in findings may be due to individual 

differences, suggesting that motor simulation is not always necessary for understanding 

motor-associated words but influences our understanding when we have engaged in the 

action before.  In line with this explanation is the finding that dancers show greater 

premotor and intraparietal sulcus activity when watching movements of their familiar 

style of dance versus another unfamiliar style (Calvo-Merion et al., 2005).  This suggests 

our past motor experiences may enhance our understanding of motor-associated words 

but are not necessary. In summary, based upon current neuroimaging evidence, the lion 

share of research shows support for weak/strong embodiment theories; however, it is 

unclear whether sensory and motor regions are absolutely necessary for conceptual 

representation.   
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In contrast to studies supporting weak/strong embodiment theories, Grossman et 

al. (2002) found that abstract nouns and concrete nouns activate overlapping sensory-

motor areas, suggesting that concepts are not organized by modality but rather a 

multimodal semantic organization.  The authors propose that members of the animal 

category of concrete nouns recruit visual areas, not due to reliance of perceptual 

processing for comprehension, but because it is evolutionarily advantageous to be able to 

quickly discriminate predators by sight. While this study seemingly provides support for 

unembodied theories of cognition, weak/strong embodiment theories can explain how 

abstract concepts might be represented.   

1.1.3 Abstract concepts 

Abstract concepts, by definition, lack perceptual features and present a challenge 

for embodied theories of cognition.  How can a system that relies on sensory processing 

represent a concept that is not defined by its perceptual features?  When an abstract 

concept is considered in isolation, it seems embodied theories fail to explain how it may 

be represented.  However, when an abstract concept is considered in context, embodied 

theories succeed.   

Abstract concepts can be grounded in perception and action by viewing them as 

metaphorical extensions of concrete concepts (Lakoff, 1987).  For example, it has been 

said that life is a rollercoaster.  The conceptual representation of life is grounded in the 

experience of being on or passively viewing the nature of a rollercoaster. Similarly, 

Barsalou (1999) proposes that abstract concepts can be represented by perceptual 

symbols by framing them against simulated event sequences.  This requires placing the 

abstract concept in a context that can be experienced perceptually.  Selective attention 
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highlights the part of the simulation that gives the abstract concept its meaning while a 

perceptual symbol is formed that captures the focusing of selective attention.  

Additionally, abstract concepts are associated more with internal affective states, whereas 

concrete concepts are associated more with external experience (Kousta, Vigliocco, 

Vinson, Andrews, & Del Campo, 2011).  As noted previously, introspective states are 

also captured by perceptual symbols.  Therefore, introspective symbols may be necessary 

for representing abstract concepts. 

Vigliocco, Meteyard, Andrews, and Kousta (2009) proposes that all concepts, 

concrete and abstract, are represented by experiential and linguistic information.  

Experiential refers to sensory, motor and affective information, while linguistic refers to a 

concept’s typical association with other concepts.  This theory suggests that concrete and 

abstract conceptual representations differ in the amount that each type of information 

contributes.  Concrete conceptual representations would tend to be dominated by sensory 

and motor experiential information, while abstract conceptual representations would be 

dominated by linguistic information with a relatively large contribution of affective 

experiential information.   

Currently, few studies have investigated the representation of abstract concepts 

from the embodied cognition perspective.  Pulvermüller and Hauk (2006) shows that 

moderately abstract words associated with color and form activate regions anterior to the 

pre-motor and visual cortices, suggesting abstract concepts are possibly grounded in 

action and perception.  In line with Vigliocco et al. (2009), other neuroimaging studies 

have found activation in sensory and motor areas as well as regions associated with 

affective processing for abstract concepts (Pexman, Hargreaves, Edwards, Henry, & 
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Goodyear, 2007; Wilson-Mendenhall, Barrett, Simmons, & Barsalou, 2011).  In contrast, 

a meta-analysis of 19 fMRI and positron emission tomography (PET) studies, indicates 

that abstract concepts elicit activity in regions associated with verbal processing (inferior 

frontal gyrus and middle temporal gyrus) while concrete concepts elicit activity in 

perceptual areas (Wang, Conder, Blitzer, & Shinkareva, 2010).      

In summary, the embodiment hypothesis proposes that cognition is grounded in 

action and perception.  Theories explaining how concepts are represented in the brain can 

be characterized by the extent to which sensory and motor representations are necessary 

for conceptual representation as well as how much interaction occurs between amodal 

and sensory and motor systems.  Patient studies provide support for 

unembodied/secondary embodiment theories of cognition, which posit that sensory and 

motor representations are unnecessary for conceptual representation.  In contrast, the bulk 

of neuroimaging studies of language support weak or strong embodiment theories, which 

suggest that conceptual representation is entirely dependent upon sensory and motor 

representations. 
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CHAPTER 2 

VISUAL AND HAPTIC OBJECT PERCEPTION 

 The current work investigated how the brain represents concept with visual and 

haptic features.  Embodied theories of cognition predict that conceptual representation is 

grounded in the sensory systems involved in perceiving the referent of a concept.  

Therefore, it is imperative to understand how objects are perceived through the visual and 

haptic senses. 

Vision is perhaps the most important sense for object perception.  Accordingly, 

studies of visual perception of objects greatly outnumber studies investigating object 

perception using other senses, and visual perception is relatively well-understood.  Due to 

the heavy overlap in information acquired during visual and haptic perception of objects, 

vision and haptics have naturally been the focus of studies investigating multimodal 

representations of objects.         

 Visual perception provides rich information about object properties.  Some 

information is exclusive to the visual modality, such as color, brightness and spatial 

pattern, but some object properties are shared across multiple senses.  The geometric 

properties of objects, such as shape, size, and curvature can be perceived with both vision 

and haptics.  For example, the curvature of a basketball can be seen with the eyes as well 

as felt with the hand.  Therefore, geometric information is represented redundantly by 

these senses.  Haptic perception can provide unique information regarding the material 

properties of objects that are unavailable to vision.  Material properties include weight, 
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temperature, elasticity and texture.  While visual cues may suggest which material 

properties an object has, haptic perception is often necessary to characterize an object’s 

material properties.             

 To understand how the brain processes the material and geometric properties of 

objects, one must first consider how the visual and haptic systems are organized.  The 

visual system can be divided into two separate pathways, the ventral and dorsal streams.  

The ventral stream originates in area V1 of the primary visual cortex and projects to the 

inferotemporal cortex, while the dorsal stream originates in area V1 and projects to the 

posterior parietal cortex (PPC).  The visual system is hierarchical, in that information 

grows in complexity as it flows from V1 to its final destination in the parietal and 

temporal cortices.  Ungerleider and Mishkin (1982) proposes a model in which the 

ventral and dorsal streams process different aspects of visual perception.  The ventral 

stream processes information regarding the identity of objects, while the dorsal stream 

processes information regarding the spatial location of objects.  As an alternative to this 

model, Goodale and Milner (1992) proposes a model in which the two pathways process 

the same perceptual information for different purposes.  The ventral stream forms a 

perceptual representation of the object that captures its perceptual properties and 

relationship to its environment for the purpose of identification and extracting meaning, 

while the dorsal stream captures information regarding the location of the object in 

relationship to the body for the purpose of acting upon the object.  The dual pathway 

model of the visual system has become widely accepted since the late 20th Century and 

has influenced the way in which other sensory systems are studied.  As a result, similar 

models have been developed for the haptic system.         
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Due to the heavy overlap in information processed in the visual and haptic 

systems, it stands to reason that information is shared between the two.  Evidence 

suggests that the ventral and dorsal streams of the visual and haptic systems converge.  

The convergence of the corresponding streams of the visual and haptic systems occurs at 

the LOC and IPS, which are thought to be bimodal visuo-haptic processing centers 

(James et al., 2007).  The LOC was once thought to be solely a visual processing area, as 

a lesion study of patient DF suggested the LOC is necessary for visual object recognition 

(James, James, Humphrey, & Goodale, 2005).  However, recent evidence suggests the 

LOC is more than a visual processing area (Deshpande, Hu, Lacey, Stilla, & Sathian, 

2010; James et al., 2005; Lacey, Flueckiger, Stilla, Lava, & Sathian, 2010; Lacey, Tal, 

Amedi, & Sathian, 2009).  James et al. (2005) demonstrated that processing in the LOC 

can be driven by either visual or haptic exploration of an object’s shape.  It is possible; 

however, that LOC activation elicited by haptic processing of shape information occurs 

merely as a result of visual imagery of an object’s shape.  By manipulating the familiarity 

of objects, Lacey et al. (2010) found that the LOC is activated by visual imagery of shape 

only when the object is familiar.  When an object is unfamiliar, LOC activation is driven 

by haptic input from exploration of the object’s shape.  Effective connectivity studies 

suggest the LOC is accessible by both top-down and bottom-up connections depending 

on the familiarity of the perceived object (Lacey et al., 2009; Deshpande et al., 2010).  

Bottom-up connections project from the somatosensory cortex and become activated 

during perception of unfamiliar objects.  Top-down connections project from frontal 

areas and become activated during perception of familiar objects (Lacey et al., 2009; 

Deshpande et al., 2010).  Familiar objects elicit activation in the LOC that is less 
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somatosensory driven, because global shape can be derived without spatial imagery.  

Therefore, it seems visual and haptic input activates the LOC directly, and activation is 

modulated by the familiarity of the object.   

The existence of bimodal visuo-haptic areas raises the question of how perceptual 

information about objects is represented.  When an object is perceived, is one integrated 

multimodal representation formed, or are multiple unimodal representations formed?  

The answer to this question can be discovered by examining the manner in which 

perceptual information is processed in these bimodal visuo-haptic areas during object 

perception.  An early study suggests that visual and haptic representations of objects are 

modality-specific with cross-modal transfer of information, possibly through the insula 

claustrum (Hadjikhani & Roland, 1998).  That is, visual and haptic information may be 

processed independently and become bound into a single percept through perceptual 

binding within this region (Crick & Koch, 2005).  More recent evidence suggests 

otherwise, as the regions within the insula claustrum appear to be unimodal (Remedios, 

Logothetis, & Kayser, 2010).  (Whitaker, Simões-Franklin, & Newell, 2008) suggests 

that information from visual and haptic perception of texture is processed in parallel and 

remains mostly independent.  These studies suggest that multiple unimodal 

representations are formed during object perception, and visual and haptic information is 

merely processed within the same bimodal region but is not integrated. 

While multiple unimodal representations cannot be ruled out, more evidence 

supports a single integrated multimodal representation for objects with visual and haptic 

properties (Helbig et al., 2012; James et al., 2005; Kim & James, 2010; Pietrini et al., 

2004).  By manipulating stimulus salience, Kim & James (2010) found evidence that 
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visual and haptic information is integrated in the LOC and IPS based on “enhanced 

effectiveness,” in which multisensory activation becomes enhanced with increasing 

effectiveness of unisensory stimuli.  Similarly, Helbig et al. (2012) suggests that visual 

and haptic shape information is integrated as early as the primary somatosensory cortex.  

Taken together these studies indicate that an integrated visuo-haptic representation of 

objects is formed early on during object perception; however, the possibility of additional 

unimodal representations cannot be ruled out.  

 In summary, the visual and haptic systems are overlapping perceptual systems 

that contain dual pathways for processing different aspects of perceptual stimuli.  The 

LOC, once thought to be a visual region, is bimodal, which both visual and haptic stimuli 

activate directly.  Evidence suggests that these perceptual systems represent stimuli 

multi-modally rather than using multiple unimodal representations. 
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CHAPTER 3 

APPROACHES TO THE STUDY OF CONCEPTUAL REPRESENTATION 

3.1 UNIVARIATE VS. PATTERN-BASED APPROACHES 

Traditional approaches to the analysis of fMRI data use univariate statistical 

methods to determine which brain regions are involved in the performance of a specific 

cognitive task.  These methods seek to detect average activation differences in brain 

regions between experimental conditions.  That is, the analysis asks which brain regions 

are on average activated to a greater extent during condition A in comparison to condition 

B.  A significant difference in average regional brain activation in one condition over 

another suggests a brain region’s involvement in a specific cognitive process.     

Fundamentally, traditional approaches are advantageous, because they statistically 

link brain activity to the experimental conditions of interest; however, a major 

assumption of traditional approaches produces several disadvantages (O'Toole et al., 

2007).   Traditional approaches assume voxels are independent, when intercellular 

communication prevents this possibility.  As a result, traditional approaches do not have 

the capacity to investigate the information present in the interaction between voxels.  

Furthermore, the assumption of independence necessitates measures to control for 

multiple comparisons.  Since traditional approaches compare activity measured at every 

voxel between experimental conditions, the alpha level for statistical tests becomes 

inflated.  The corrections made to counter the inflation of alpha lead to overly 
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conservative statistical tests, resulting in the possibility of experimenters falsely assuming 

the null hypothesis (O’Toole et al., 2007).  Methodologically, traditional approaches 

utilize spatial smoothing of voxels within a region of interest (ROI) to reduce noise and 

increase sensitivity to activation in response to an experimental condition.  However, 

spatial smoothing also reduces the sensitivity to detect fine-grained patterns of activation, 

which may discriminate between experimental conditions (Mur, Bandettini, & 

Kriegeskorte, 2009; Norman, Polyn, Detre, & Haxby, 2006).  Another result of spatial 

smoothing is that traditional approaches can only detect situations when all voxels in an 

ROI display a signal change in the same direction.  When voxels within an ROI exhibit 

signal changes in opposite directions, which may or may not change the spatial-mean 

activation, traditional approaches will not pick up the change.   

In contrast, pattern-based approaches, such as multivariate pattern analysis 

(MVPA), use multivariate statistical methods to analyze the information content of fine-

grained patterns of brain activity found in functional brain regions (Mur et al., 2009).  

These methods seek to detect differences in patterns of brain activity to infer how 

information is represented in the brain.  Unlike traditional approaches, pattern-based 

approaches do not use spatial smoothing to increase sensitivity to activation in response 

to an experimental condition.  Instead these approaches exploit the variation in brain 

activation across ROIs to investigate how patterns of brain activity discriminate between 

experimental conditions.      

Fundamentally, pattern-based approaches possess the same advantage as 

traditional approaches but also overcome the disadvantages resulting from an assumption 

of independent voxels.  Like traditional approaches, pattern-based approaches provide a 
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link between brain activity and experimental conditions presented during scanning 

(O’Toole et al., 2007).  The ultimate goal is to use patterns of brain activity to predict the 

experimental condition being experienced by the participant.  Rather than assuming 

voxels are independent, pattern-based approaches examine voxels jointly and detect 

patterns of brain activity resulting from interactions among voxels.  While traditional 

approaches focus on answering the question of where information processing occurs in 

the brain, pattern-based approaches focus on explaining how the brain represents 

information while also revealing where information resides (O’Toole et al., 2007; 

Norman et al., 2006).  Methodologically, pattern-based approaches have the advantage of 

detecting any activity pattern change within an ROI, even when the spatial-mean activity 

does not change (Mur et al., 2009).  Finally, pattern-based approaches exhibit increased 

temporal resolution, as the experimental condition being experienced by the participant 

can be predicted from mere seconds of brain activity (Norman et al., 2006).  

The following sections detail the steps involved in MVPA for extracting the fMRI 

signal and analyzing the observed patterns of brain activity.  Typically, the procedure for 

MVPA entails preprocessing the data, dividing the data into training and test sets, 

selecting the features to be used to train the classifier, choosing an appropriate classifier, 

and cross-validating the results.  Researchers must make choices at every step that impact 

the final result of pattern classification.  These choices must be made in light of the 

experimental design and research question. 

3.1.1 Preprocessing 

The first step in pattern analysis is data preprocessing.  For pattern-based 

approaches the data is preprocessed in a similar way as traditional approaches, including 
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slice timing correction, motion correction, and removal of trends.  As mentioned 

previously, spatial smoothing is not employed for pattern-based approaches, as this 

removes the fine-grained patterns that carry informational content.  Subsequently, the 

data must be transformed into examples, which entails extracting the relevant signal 

values to input into the classifier.  Generating examples of experimental conditions can 

be done in many ways and largely depends on experimental design.  One common way to 

create an example is to average multiple volumes of data from a single trial to 

approximate the peak of the hemodynamic response function (HRF; Pereira, Mitchell, & 

Botvinick, 2009).  This creates a vector of average signal readings at each voxel, which is 

tied to the experimental condition presented in that trial.  Alternative methods include 

using single volume measures as individual examples or averaging multiple trials of the 

same experimental condition (Mur et al., 2009; Pereira et al., 2009).  Examples can also 

be created from estimates of predicted voxel activity derived using the General Linear 

Model (GLM; Mur et al., 2009; Pereira et al., 2009).  In this case, the pattern of beta-

values across voxels is used as an example for that condition.  Regardless of the method 

chosen for creating examples, it is better to create more examples than fewer, as 

parameter estimates generated by the classifier become better with a larger input of 

examples.  Additionally, patterns should not be averaged across participants to avoid 

averaging out the fine-grained informational content.  All analysis should be performed 

in native subject space.        

3.1.2 Data division 

To ensure unbiased results, data should be divided into two sets, the training set 

and the test set.  The training set refers to the examples used as input for the classifier, 
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from which the classifier learns a mapping from the experimental condition to the activity 

pattern.  The test set refers to the examples whose class label is predicted from the 

mapping derived from the training set.  It is important to choose the training and test sets 

carefully, so that the data are independent.  This can be achieved by selecting examples 

that are created from blocks or trials that are not overlapping (Pereira et al., 2009; Mur et 

al., 2009).  A violation of independence can cause an increase in accuracy estimates, as 

the example in the training and test sets are very similar.   

3.1.3 Feature selection 

Once the data has been preprocessed and split into independent training and test 

sets, the next step is feature selection.  The number of features sampled in a typical fMRI 

study can reach into hundreds of thousands voxels.  When using voxels as features, the 

number of features greatly surpasses the number of examples.  It is advantageous to 

reduce the number of features used for classification due to issues of over-fitting 

(O’Toole et al., 2007).  When there are too many free parameters relative to examples, 

the training data can be over-fit.  This situation results in a solution that generalizes to 

any test set drawn from the same population.  The solution to this problem is to select a 

subset of features to be used for classification.  Feature selection should be performed on 

the training data only to maintain an assumption of independence between the training 

and test sets.  Using the entire dataset for feature selection allows the test set to influence 

how well the classifier learns from the training set (Pereira et al., 2009).   

A theory-driven approach to feature selection is to choose voxels located in a ROI 

to use for classification.  For example, the primary somatosensory cortex could be used as 

an ROI for classifying whether an object is perceived with the visual or haptic modality, 
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as this region is well-known for processing information related to the sense of touch.  

However, ROIs chosen for feature selection must not necessarily be spatially contiguous 

(Mur et al., 2009).  A localizer scan could be used to determine which areas of the brain 

are more responsive to a certain aspect of a task.  A localizer task could be performed by 

comparing the presentation of a haptic stimulus to fixation, and those voxels displaying 

more activity for the haptic condition would be selected regardless of whether they reside 

in the primary somatosensory cortex or elsewhere in the brain. 

Searchlight analysis is a classification method that uses a unique approach to 

feature selection.  Rather than using functionally-defined ROIs, this analysis employs a 

spherical multivariate “searchlight” with a predefined search radius to scan an entire 

volume.  The signals from all voxels falling within the searchlight region are combined 

using a multivariate statistic, such as the Mahalanobis distance, which compares the 

activity patterns between conditions for selected voxels (Kriegeskorte, Goebel, & 

Bandettini, 2006).  The voxels within the searchlight are examined jointly with MVPA to 

determine whether information about the variables of interest is carried within the 

searchlight region (Chen et al., 2010).  Computational expense depends on the size of the 

searchlight used, as the number of classifiers trained is equal to the number of searchlight 

regions.  While possibly computationally expensive overall (when a small searchlight 

region is used), the searchlight analysis restricts the features examined during the training 

of each individual classifier, reducing the risk of over-fitting the data.         

As an alternative to ROI-based approaches, feature selection can be done using 

inferential statistics to evaluate which features are most useful for classification (O’Toole 

et al., 2007; Pereira et al., 2009; Mur et al., 2009).  Mitchell et al. (2004) demonstrated 
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the usefulness of feature selection methods which choose voxels that discriminate best 

between an experimental condition and fixation.  Voxel discriminability is evaluated by 

computing a pairwise t-test between each voxel’s activity level during the experimental 

condition and fixation condition.  Voxels with the largest t-statistics are chosen for 

classification.  Feature selection based on a measure of voxel stability has also been used 

successfully (Mitchell et al., 2008; Pereira et al., 2009; Shinkareva et al., 2008).  Voxel 

stability is computed by averaging pairwise correlation coefficients between vectors of 

presentations of all conditions in the training set.  Voxels with the largest t-statistics, 

reflecting more consistent variation in activity across conditions, are selected for 

classification.  Both methods use inferential statistics to evaluate how each voxel 

responds across conditions to allow for reducing the overall number of features to those 

that will perform best for classification.       

Dimensionality reduction techniques have also been used to select features for 

classification (O’Toole et al., 2007; Pereira et al., 2009; Mur et al., 2009).  This type of 

feature selection involves finding a lower dimensional representation of the fMRI data by 

using multivariate statistical methods such as principal components analysis (PCA) or 

independent components analysis (ICA).  In the case of PCA, the entire dataset is reduced 

to a set of orthogonal brain response patterns that capture as much of the variance in the 

data as possible.  Components accounting for the most variance in the data are selected 

for classification, and the vectors of weights associated with the principal components 

can be used as input instead of the vectors of voxel readings (O’Toole et al., 2007; 

Pereira et al, 2009).  Dimensionality reduction techniques are advantageous, because they 

reduce the number of features as well as reduce noise in the data (O’Toole et al., 2007).  
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However, unlike inferential statistical methods of feature selection, most dimensionality 

reduction techniques do not have the benefit of associating voxel readings with their 

corresponding experimental condition and may not improve classification results (Pereira 

et al., 2009).         

3.1.4 Classification   

The goal of classification algorithms is to discriminate between the patterns of 

brain activity elicited by each experimental condition.  Classification is performed on the 

multivariate space derived from the fMRI signal readings of selected voxels at specific 

time points during the scan.  Given N voxels are selected for classification, the pattern of 

brain activity is represented in an N-dimensional space with a single data point for every 

voxel reading (Tong & Pratte, 2012).  The classification algorithm seeks to divide the 

representational space into classes of stimuli.   

Two types of classification algorithms can be used to analyze fMRI data.  The 

first and most simple is the linear classifier.  Linear classifiers aim to find the most 

optimal separation of stimulus classes by dividing the representational space with a 

hyperplane (O’Toole et al., 2007).  The second type of classifier is non-linear, which can 

achieve a more optimal separation of the representational space by bending the 

hyperplane in different ways (O’Toole et al., 2007).  While non-linear classifiers can 

capture more complex relationships between stimulus classes and patterns of brain 

activity, it is suggested to start with the simpler linear classifier (O’Toole et al., 2007; 

Kriegeskorte, 2011; Tong & Pratte, 2012).  Linear classifiers reduce the risk of over-

fitting the data, which occurs easily due to a greater number of voxels than signal 

readings (Kriegeskorte, 2011).  Additionally, a linear relationship between stimulus 
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classes and patterns of brain activity is easier to interpret than a non-linear relationship.  

Finally, non-linear classifiers can capture relationships between stimulus classes and 

patterns of brain activity that reflect computations of the classifier itself rather than 

computations performed in the brain (Tong & Pratte, 2012).  Kriegeskorte (2011) 

suggests that the benefits of linear classifiers outweigh the ability of non-linear classifiers 

to capture more complex relationships.  O’Toole et al. (2007) suggests trying a non-linear 

classifier only after a linear classifier fails to achieve above chance accuracy and when 

there is a theoretical motivation to assume a more complex relationship, such as testing 

computational models of brain processing (Kriegeskorte, 2011). 

3.1.5 Cross-validation 

As mentioned previously, the data must be divided into training and test sets to 

get an unbiased estimate of how well the classifier learns the relationship between 

experimental conditions and patterns of brain activity.  Additionally, classification 

algorithms benefit from having lots of examples from which to learn.  As a result, the 

data must be divided in such a way that there are plenty of training examples available 

but there are enough examples on which to test.  Cross-validation is a procedure for 

evaluating how well a classifier learns the identity of patterns of brain activity while 

optimizing the use of examples from the data.  The most extreme version of cross-

validation is the leave-one-out cross-validation (LOOCV) approach.  LOOCV entails 

training the classifier on all examples except one and testing on the left-out example.  

Then, the procedure is repeated until each example serves as the test example once.  The 

performance of the classifier is estimated by computing the percentage of correct 

classifications, also known as accuracy.   
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 A disadvantage of LOOCV is its computational expense, as the number of 

classifiers needed equals the total number of examples in the data (Perreria et al., 2009).  

K-fold cross-validation is a method that reduces the computational expense by dividing 

the data into larger chunks or folds, where k is equal to the number of folds.  The number 

of folds is typically dependent on the experimental design, which can provide natural 

folds in the data.  For example, a fold could be equal to blocks in a blocked-design 

experiment or runs in an event-related experiment.  The classifier is trained on all folds 

except one and tested on the left-out fold.  The procedure is repeated until each fold 

serves as the test fold once.  The performance of the classifier is estimated by averaging 

the percentage of correct predictions obtained at each fold.       

3.1.6 Evaluating results 

The ultimate goal of classification is to demonstrate that a classifier can predict 

which experimental condition elicited a pattern of brain activity better than a classifier 

that simply “guesses” at random.  The classification accuracy obtained from cross-

validation is an unbiased estimate of the true accuracy of the classifier.  The true accuracy 

refers to how well the classifier would predict the identity of a new example drawn 

randomly from the distribution from which examples in the training set were drawn 

(Pereira et al. 2009).  The classification accuracy estimate is said to be significant if it 

exceeds the accuracy expected if the classifier is simply guessing at random and the 

patterns of brain activity carry no information about the variables of interest (the null 

hypothesis).  In the case of an experiment with two conditions, the classifier would have 

50% chance of predicting the condition correctly given the null hypothesis is true.  The 

significance of the classification accuracy estimate can be evaluated based on the 
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binomial distribution B(n, p), where n is the number of trials of each classification 

computation and p is the probability of correct classification when the examples are 

randomly labeled (Pereira et al., 2009).  An alternative to using the binomial distribution 

to evaluate the significance of classification accuracy is to utilize a permutation test.  A 

permutation test simulates the results of a classifier that is randomly guessing by 

randomly assigning the condition labels of examples in the training set prior to training 

the classifier and testing on the test set (Pereira et al., 2009).  This is done many times, 

each with a different random assignment of condition labels.  The p-value computed from 

this test is the percentage of classification accuracies obtained from the permutation test 

that equal or exceed the observed classification accuracy (Pereira et al., 2009).  A 

significant result suggests that patterns of brain activity contain information about the 

variables of interest.  

3.1.7 Implications of pattern-based approaches      

The primary goal of pattern-based approaches is to determine whether the fMRI 

signal contains information about the variable of interest (Pereira et al., 2009).  That is, 

can we discriminate classes of the variable of interest based on patterns of brain activity?  

This question is answered by using classification algorithms to predict which stimuli a 

participant is experiencing from patterns of brain activity.  Assuming a strong 

experimental design, accurate classification that is significantly above change suggests 

that the patterns of observed brain activity contain information about the classes of the 

variables of interest.  In addition to pattern discrimination, it is possible to determine in 

which areas of the brain this information is represented (Pereira et al. 2009; Tong & 

Pratte, 2012).  Pereira et al. (2009) suggests a two-step approach for determining where 
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information is represented in the brain.  First, one can determine which voxels are 

contributing to classification accuracy by examining the set of voxels selected by feature 

selection at each fold of cross-validation.  Given that the voxels being selected contain 

sufficient information to discriminate classes, the overlap of voxels chosen at every fold 

can be viewed as the necessary set of voxels for accurate classification (Pereira et al, 

2009).  Examining the location of this necessary set may give insight as to where class 

information is represented in the brain.  Next, one can evaluate which voxels in the subset 

affect classification the most.  When using a linear classifier, this means simply 

examining the weight assigned to each voxel (Pereira et al., 2009).  Voxels with the 

largest weights contribute more to accurate classification; therefore, these voxels more 

accurately discriminate class information.  It follows that class information may reside in 

these voxels.  An alternate method of examining which voxels contribute to classification 

performance is to selectively remove voxels to be used by the classifier based on a priori 

predictions (O’Toole et al., 2007).  If the classification accuracy decreases, one can 

assume that these voxels contained information needed to discriminate between classes.  

If classification accuracy increases, one can assume these voxels contained mostly noise 

that impeded classification performance.      

 Once a subset of voxels has been identified, it is also possible to characterize how 

class information is represented within the region.  The process of describing how 

information is represented requires characterizing the relationship between the observed 

patterns of brain activity and the stimuli presented to participants (Pereira et al., 2009; 

Tong & Pratte, 2012).  This relationship is what the classifier learns, but it is up to the 

researcher to link this relationship back to the experimental design in order to understand 
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the structure of the class information.  Characterization relies on strong experimental 

design and often multiple related experiments to eliminate confounds (Tong & Pratte, 

2012).  This can be achieved in various ways, such as correlating classifier performance 

with behavioral performance, comparing the similarity of classes with the similarity in 

observed patterns of brain activity, and generalizing classifier performance to new stimuli 

(Pereira et al. 2009; Tong & Pratte, 2012).  In the first method of pattern characterization, 

classifier performance is compared with some behavioral measure to identify similarities.  

If a classifier makes similar mistakes in classification as a participant, one can infer that 

the participant and the classifier are using the same information for classification.  For 

example, Raizada, Tsao, Liu, and Kuhl (2010) demonstrated that the neural 

representation of the sounds of syllables /ra/ and /la/ were most discriminable when the 

participant was better able to behaviorally discriminate between those syllables.  When 

the participant made more mistakes in discriminating between those sounds, 

classification of the neural representation of those sounds was less accurate.  Thus, the 

relationship captured by the classifier suggests information regarding the sound of 

syllables was present in the patterns of brain activity. The second method of pattern 

characterization involves relating the similarity of the classes of stimuli with the 

similarity of patterns of brain activity.  For example, Weber, Thompson-Schill, Osherson, 

Haxby, and Parsons (2009) demonstrated that information about mammals is structured 

by category in the ventral visual pathway by comparing the computed similarity of brain 

responses to various categories of mammals with participants’ subjective similarity 

ratings of the same stimuli.  Since the brain responses and similarity ratings showed 

similar structure, it suggested that information carried in the neural patterns of activation 
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was organized by category.  Finally, pattern characterization can be achieved by 

generalizing a classifier’s performance to new stimuli.  Mitchell et al. (2008) showed that 

a classifier trained on a subset of concrete nouns from a large corpus of text could predict 

the fMRI activation associated with thousands of novel words from the same corpus of 

text.  This demonstrated that the classifier was able to learn a set of semantic features that 

make up the neural representation of concrete nouns. 

 Finally, pattern classification can be used to evaluate whether information is 

represented similarly in the brains of different people.  Cross-participant classification 

refers to a classification method that trains classifiers across multiple participants in a 

study and predicts the class of variable a novel participant experienced.  Given that the 

classifier can accurately predict which class of variable the novel participant experienced 

based on the patterns of brain activity of other participants, it follows that information 

regarding the classes of the variable is represented similarly across participants.   

 In summary, univariate and pattern-based approaches to the analysis of fMRI data 

ask different questions.  Univariate approaches ask which brain regions are involved in a 

cognitive task, while pattern-based approaches seek to reveal the representational content 

of brain regions.  Both have the ability to statistically link experimental conditions to 

neural activity, but pattern-based approaches are much more sensitive and consider the 

interactions among voxels.  MVPA is a pattern-based approach that seeks to predict the 

experimental condition from observed patterns of brain activity.  This powerful approach 

to analyzing fMRI data is data-driven and very flexible based on the experimental 

question. 
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3.2 UNIVARIATE  APPROACHES TO THE STUDY OF CONCEPTUAL REPRESENTATION 

Previous studies investigating how the brain processes concepts with perceptual 

and motor features have utilized univariate approaches.  Univariate approaches ask the 

question of which brain regions are involved in a certain cognitive task.  Results of the 

previous studies show which brain regions are involved in processing concepts with 

perceptual and motor features by examining which voxels show significantly greater 

activation in one condition over another.  In most cases, these studies have implicated 

regions that underlie perceptual processing and motor movement in the processing of 

concepts with perceptual and motor features, providing support for embodied theories of 

cognition. 

The strengths of univariate approaches stem from the simplicity of the questions 

they ask.  When a region of the brain displays greater activation levels for one condition 

over another, it is inferred that the brain region is engaged by and involved in the 

cognitive state associated with the experimental condition.  As a result, univariate models 

are easily interpretable.  A brain region is either activated or not activated by an 

experimental condition.  In previous studies examining concepts containing visual 

information, the left ventral temporal lobe was activated when concepts provided 

information about the property of color (Martin et al., 1995; Goldberg et al., 2006).  In 

addition to perceptual studies showing that color perception also activates the left ventral 

temporal lobe, it can be concluded that the left ventral temporal lobe is involved in both 

color perception and the representation of concepts containing information about color.  

Univariate approaches have the ability to statistically link experimental conditions to 

regional brain activation while providing an easily interpretable model.  These strengths 
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of univariate approaches have provided a large amount of evidence to link conceptual 

processing of concepts containing perceptual and motor features to brain regions 

previously implicated in processing perceptual experience and motor movement.  This 

evidence is highly informative for further studies utilizing univariate approaches and, as 

will be demonstrated, pattern-based approaches.       

   While univariate approaches possess strong qualities, they are limited due to the 

assumption of voxel independence.  Univariate approaches assume voxels are 

independent and evaluate each voxel in isolation to determine whether it shows greater 

activation in one condition over another.  This produces a need for overly conservative 

statistical tests, which greatly diminishes the power to detect activation differences at the 

voxel level.  Additionally, to increase the signal-to-noise ratio within a region of interest, 

spatial smoothing is utilized.  This discards fine-grained patterns of information present 

within the region of interest.  All three characteristics of univariate approaches result in a 

major loss of information.  This necessitates the question of what information is being 

lost and how this information could provide insight into how concepts are represented.  

For instance, many more brain regions could be implicated in the representation of 

concepts containing perceptual information.  In the case of a brain region that displays 

signal changes in opposite directions and does not achieve a change in spatial mean 

activation, univariate approaches will not be sensitive to the signal change.  This brain 

region will not survive the statistical analysis and will, therefore, not be implicated in the 

representation of the concept.  Meyer, Kaplan, Essex, Damasio, and Damasio (2011) 

demonstrates an example of this within the perception literature in a pair of studies 

examining cross-stimulus processing of tactile stimuli.  A study utilizing single-cell 
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recordings, analogous to the univariate approach, failed to detect activity in the primary 

somatosensory cortex, because variations in the firing rates of individual neurons never 

reached significance (Lemus, Hernández, Luna, Zainos, & Romo, 2010).  In an fMRI 

study with a similar experimental paradigm, a pattern-based approach was able to detect 

cross-stimulus processing in the primary somatosensory cortex, as variations in the firing 

rates of individual neurons were jointly analyzed as a neuronal population (Meyer et al., 

2011).  The difference in approach resulted in two different conclusions from similar 

studies.  The univariate approach led to a conclusion that primary sensory cortices do not 

encode cross-modal stimuli, while the pattern-based approach led to a conclusion that 

primary sensory cortices do encode cross-modal stimuli.   

The previous scenario demonstrates how both approaches are necessary in order 

to provide a clearer picture of how concepts are represented in the brain.  However, 

univariate and pattern-based approaches can be complementary rather than contradictory.  

For instance, studies taking univariate approaches can be utilized by providing a set of 

core brain regions for analysis with pattern-based approaches.  Activity in brain regions 

identified by univariate approaches have demonstrated a strong statistical link to 

experimental conditions and have survived highly conservative statistical tests.  

Therefore, studies employing univariate approaches suggest a core group of brain 

structures that may contribute to whole-brain patterns of activity.  Additionally, they 

provide a great starting point for the ROI-based feature selection stage of MVPA.  For 

these reasons, univariate approaches and pattern-based approaches should be considered 

complementary approaches to the study of conceptual representation. 
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3.3 PATTERN-BASED APPROACHES TO THE STUDY OF CONCEPTUAL REPRESENTATION 

It is clear how univariate approaches measure up for the study of conceptual 

representation, but how are pattern-based approaches particularly well-suited to the study 

of concepts that contain perceptual information?  Pattern-based approaches, such as 

MVPA, are beneficial for the study of concepts that contain perceptual information due to 

the unique questions pattern-based approaches ask as well as the nature of perceptual 

data.  In contrast to univariate approaches, pattern-based approaches ask whether 

information about stimuli is present in a brain region.  Pattern-based approaches answer 

this question by jointly examining voxels to detect patterns of brain activity resulting 

from interactions among them.  Pattern-based approaches are well-suited for the study of 

how the brain represents concepts containing perceptual information, because perceptual 

data is inherently multivariate.  It is thought that perceptual representations, as well as 

cognitive and motor representations, are encoded in groups of neurons through 

population coding (Kriegeskorte, 2011).  For example, Groh (2000) demonstrated that the 

direction in which a stimulus is perceived to move is determined by the overall pattern of 

response rather than its peak in area MT.  Given that perceptual representations are 

encoded in the activity of groups of neurons, pattern-based approaches are well-suited for 

studying such representations to reveal the informational content of the region containing 

those neurons. 

In addition to its multivariate nature, perceptual data is inherently multi-modal.  

Findings from studies of visual and haptic object perception demonstrate that properties 

are represented both redundantly and in an integrated fashion within the visual and haptic 

systems.  Additionally, information acquired through visual perception can be found in 
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patterns of brain activity in the primary somatosensory cortex (Meyer et al., 2011).  The 

multi-modal nature of perceptual data makes pattern-based approaches appropriate for the 

study of concepts containing perceptual information, because conceptual representations 

may be spatially overlapping.  Univariate approaches utilize spatial smoothing, which 

tends to blur the distinctions between spatially overlapping patterns (Raizada & 

Kriegeskorte, 2010).  However, pattern-based approaches do not always use spatial 

smoothing in order to exploit the fine-grained patterns of brain activity.  Furthermore, 

pattern-based approaches have been successfully used to investigate spatially overlapping 

neural representations.  For example, Raizada et al. (2010) was able to discriminate 

between highly overlapping neural representations of the phonemes /ra/ and /la/ in the 

auditory cortex.  Univariate approaches would not have been successful at making the 

distinction between the representations of the two phonemes, because the spatially 

smoothed average activation for each phoneme’s representation was equal.  Therefore, 

the activation difference between conditions was zero.  In the case of visual and haptic 

object perception, many studies have suggested that the LOC is the site where visual and 

haptic information is either integrated or represented jointly (Deshpande et al., 2010; 

James et al., 2005; Lacey et al., 2010; Lacey et al., 2009).  Univariate approaches to the 

study of concepts containing visual and haptic information may not be able to 

discriminate between spatially overlapping visual and haptic representations in this 

region.  Perhaps, this is the reason no studies examining conceptual representation have 

implicated the LOC in the processing of concepts containing visual and haptic 

information.  Pattern-based approaches may be able to demonstrate that visual and haptic 

information is indeed carried in the patterns of brain activity located in the LOC.  
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In summary, univariate and pattern-based approaches to the analysis of fMRI data ask 

different questions.  Univariate approaches ask which brain regions are involved in a 

cognitive task, while pattern-based approaches seek to reveal the representational content 

of brain regions.  Both have the ability to statistically link experimental conditions to 

neural activity, but pattern-based approaches are much more sensitive and consider the 

interactions among voxels.  MVPA is a pattern-based approach that seeks to predict the 

experimental condition from observed patterns of brain activity.  Because perceptual data 

is inherently multivariate and spatially-overlapping, pattern-based approaches are well-

suited to study the representation of concepts with perceptual features. 

3.4 GOALS OF THE CURRENT WORK 

The current work investigated the neural representation of concepts with 

perceptual features, specifically visual and haptic, to understand how the modal aspects 

of concepts are represented.  The purpose was to demonstrate that the representation of 

concepts with perceptual features is more consistent with weak and strong embodiment 

theories than unembodied and secondary embodiment theories; however, it is beyond the 

scope of the current work to provide evidence that rules out amodal conceptual 

representation.  The central hypothesis was that the neural representation of concepts 

with perceptual features is distributed and includes brain regions in the perceptual 

systems activated when interacting with the referent of that concept.  More specifically, 

concepts containing visual information should be represented in brain regions active 

when processing visual stimuli, while concepts containing haptic information should be 

represented in brain regions active when processing haptic stimuli.   

The specific aims were as follows: 
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1.  Determine which brain regions participate in processing concepts with perceptual 

features.  The working hypothesis was that concepts with visual features are 

processed by regions known to be active when perceiving objects visually, while 

concepts with haptic features are processed by regions known to be active when 

perceiving objects haptically (Newman et al., 2005).  Additionally, we examined 

the patterns of functional connectivity of these brain regions.   We hypothesized 

that functional networks for processing concepts with visual and haptic features 

contain similar brain regions, but these brain regions are connected differently 

based on the type of stimulus being processed.   

2. Determine if patterns of brain activity elicited by processing concepts can be used 

to predict the perceptual information content of a concept using MVPA within 

and between participants.  Our working hypothesis was that the perceptual 

information content of a concept can be predicted from distributed patterns of 

brain activity as well as patterns of brain activity from a priori-defined regions of 

interest.  Success with MVPA demonstrates that patterns of brain activity contain 

information pertaining to the perceptual features of concepts.   
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CHAPTER 4 
 

BEHAVIORAL EXPERIMENT 1 
4.1 PURPOSE 

 The purpose of this experiment was to demonstrate that the representation of 

concepts with visual and haptic features involves perceptual processing.  One way to 

illustrate that conceptual representations rely on perceptual systems is to demonstrate a 

known perceptual phenomena in conceptual processing.  Connell and Lynott (2010) 

replicated the perceptual phenomenon known as the “tactile disadvantage” for identifying 

the haptic properties of words in comparison to other perceptual properties. When 

participants were asked to respond to the arrival of a perceptual stimulus, they were 

slower to detect haptic stimuli than visual stimuli even though they were told which 

modality to expect.  The current experiment intended to show a similar tactile 

disadvantage for making judgments about concepts with visual and haptic features.  

Given that conceptual processing relies on perceptual systems, we expected to find 

slower reaction times for processing concepts with haptic features than for concepts with 

visual features. 

4.2 MATERIALS & METHODS 

4.2.1 Participants 

 Participants were thirty-three (18 female) adults ranging in age from 18 to 29 

years (M = 21.1). One participant was excluded from the behavioral analysis for low 

accuracy (less than 75% correct).  Participants were native speakers of English with 
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normal or corrected-to-normal vision.  All were recruited from the University of South 

Carolina Psychology Participant Pool.  Informed consent was obtained from each 

participant prior to the experiment, in accordance with the protocol set forth by the 

University of South Carolina Institutional Review Board. 

4.2.2 Stimuli 

 A set of 192 visual and haptic concept-property word pairings were selected from 

a database of 774 multi-modal concept-property items from Dantzig, Cowell, Zeelenberg, 

and Pecher (2011).  Of the 192 visual concept-property pairings, 96 contained visual 

information, and 96 contained haptic information.  Concept-property pairings were rated 

for how strongly each is experienced with five sensory modalities (sight, sound, touch, 

smell and taste) through a series of norming studies.  The concept properties with the 

highest modality exclusivity ratings for vision and haptics were chosen to ensure stimuli 

were as unimodal as possible (threshold of 65% or higher for vision and 35% for haptics).  

Haptic stimuli are inherently more multi-modal, and the threshold for modality 

exclusivity reflects this.  Words containing visual and haptic information did not differ 

significantly in length (p = 0.11) or familiarity (p =0.95).      

4.2.3 Experimental paradigm 

Participants performed a perceptual property verification task similar to tasks used 

in behavioral and neuroimaging studies of conceptual processing (Goldberg et al., 2006; 

Pecher, Zeelenberg, & Barsalou, 2003).  On any given trial, participants were asked to 

decide which of two properties best described a concept from either the visual or haptic 

categories.  The two properties included perceptual features.  For example, given the 

concept “ZEBRA” and the visual properties “STRIPED” and “RED,” the participant 
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4.3 RESULTS 

 The mean reaction times and error rates for verifying properties of concepts with 

visual and haptic features were compared using paired-samples t-tests.  The mean 

reaction time for verifying properties of concepts with visual features (M =1440.58 ms) 

was significantly shorter than the mean reaction time for verifying properties of concepts 

with haptic features (M = 1488.55 ms, p < 0.001, Figure 4.2).  The mean number of 

correct responses for verifying properties of concepts with visual features (M = 80.36) 

was not significantly different than the mean number of correct responses for verifying 

properties with haptic features (M = 79.09, p = 0.12).    

     
Figure 4.2 Mean reaction times for verifying concepts with visual and haptic features. 

4.4 SUMMARY 

 The purpose of this study was to investigate whether the representation of 

concepts with visual and haptic features involves perceptual processing by demonstrating 

a perceptual phenomenon known as the “tactile disadvantage” in behavioral measures of 

conceptual processing.  Given that conceptual processing relies on perceptual systems, 
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we expected to see a tactile disadvantage when participants verified properties of 

concepts with visual and haptic features, such that reaction times for verifying properties 

of concepts with haptic features would be significantly slower than reaction times for 

verifying properties of concepts with visual features. 

 A tactile disadvantage was found when participants verified properties of 

concepts with visual and haptic features.  Participants were significantly slower to verify 

properties of concepts with haptic features than they were when verifying properties of 

concepts with visual features.  No differences were found in the accuracy of responses for 

verifying properties of concepts with visual and haptic features, suggesting that the 

difference in reaction times was not due to a difference in task difficulty or a speed-

accuracy trade off.  The results suggest that conceptual processing indeed relies on 

perceptual systems, as a phenomenon specific to perception emerged during conceptual 

processing.   

These findings further support modal theories of conceptual knowledge by 

demonstrating that conceptual representation involves perceptual processing.  However, 

demonstrating that perceptual processing is involved in conceptual representation cannot 

rule out amodal representations.  It is possible that perceptual processing is an emergent 

process that is unnecessary for the representation of concepts and that amodal 

representation is present.  Further studies will need to be conducted to demonstrate the 

necessity of modal representations for conceptual processing.     
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CHAPTER 5 

BEHAVIORAL EXPERIMENT 2 

5.1 PURPOSE 

 The purpose of the second behavioral experiment was to validate stimuli chosen 

for the main fMRI experiment.  In order to evaluate how perceptual features of concepts 

are represented, a baseline condition was needed to control for the perceptual features of 

concepts.  Abstract concepts are defined by their lack of perceptual features, so a baseline 

condition utilizing abstract conditions was created.  To ensure the task was equally as 

difficult across conditions, a behavioral experiment was conducted to compare the 

reaction times for making property verifications about concepts with visual, haptic and 

abstract features. 

5.2 MATERIALS & METHODS 

5.2.1 Participants 

 Participants were sixteen (12 female) adults ranging in age from 18 to 36 years (M 

= 23.5).  Participants were native speakers of English with normal or corrected-to-normal 

vision.  All were recruited from the University of South Carolina community.  Informed 

consent was obtained from each participant prior to the experiment, in accordance with 

the protocol set forth by the University of South Carolina Institutional Review Board. 
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5.2.2 Stimuli 

 A set of 192 visual and haptic concept-property word pairings were selected from 

a database of 774 multi-modal concept-property items from Dantzig, Cowell, Zeelenberg, 

and Pecher (2011).  Of the 192 visual concept-property pairings, 96 contained visual 

information, and 96 contained haptic information.  Concept-property pairings were rated 

for how strongly each is experienced with five sensory modalities (sight, sound, touch, 

smell and taste) through a series of norming studies.  The concept properties with the 

highest modality exclusivity ratings for vision and haptics were chosen to ensure stimuli 

were as unimodal as possible (threshold of 65% or higher for vision and 35% for haptics).  

Haptic stimuli are inherently more multi-modal, and the threshold for modality 

exclusivity reflects this.  Additionally, 182 abstract stimuli were constructed by choosing 

frequently used abstract nouns and pairing these with commonly used descriptors from a 

thesaurus.  Word stimuli were balanced for average length (p = 0.351) and average 

frequency (p = 0.061). 

5.2.3 Experimental paradigm 

 Participants performed a perceptual property verification task similar to tasks used 

in behavioral and neuroimaging studies of conceptual processing (Goldberg et al., 2006; 

Pecher, Zeelenberg, & Barsalou, 2003).  On any given trial, participants were asked to 

decide which of two properties best described a concept from either the visual, haptic, or 

abstract categories.  In the visual and haptic conditions, the two properties included 

perceptual features.  For example, given the concept “ZEBRA” and the visual properties 

“STRIPED” and “RED,” the participant would choose “STRIPED” as the applicable 

property, because a zebra can be striped but not red.  In the abstract condition, the two 
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properties included non-perceptual features.  For example, given the concept “LOSS” and 

the abstract properties “SAD” and “SECURE,” the participant would choose “SAD” as 

the applicable property, because loss can make one feel sad but not secure.  This task was 

designed to prompt the participant to form a simulation of both the concept and its 

properties, which may involve sensory-motor processing (Dantzig et al., 2011).  The 

number of times a property was used as the correct choice was balanced with the number 

of times it was used as the incorrect choice.  Additionally, half of all trials had the correct 

choice listed on the right, while half had the correct choice listed on the left.  The concept 

and property choices were presented for 3000 ms followed by a 1000 ms fixation cross 

using E-Prime software (Psychology Software Tools, Sharspburg, PA; Figure 5.1).  

Reaction times for property verification decisions were recorded from the onset of the 

presentation of concept and property choices. 

5.3 RESULTS 

 The goal of the analysis of the behavioral data was to select 96 abstract stimuli to 

serve as a baseline condition in the main fMRI experiment.  To ensure the chosen stimuli 

were logical concept-property pairings, the accuracy of property verification responses 

were analyzed.  To be selected for further analysis, each abstract concept-property pairing 

had to receive a correct property verification response from at least 75% of participants.  

Of the 182 abstract concept-property pairings, 136 received correct property verification 

responses from at least 75% of participants.  To ensure the property verification task was 

equally difficult across visual, haptic and abstract conditions, the reaction times for 

property verifications were analyzed.  First, the mean reaction time across participants 

was computed for each abstract concept-property pairing.  Next, the mean reaction times 
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5.4 SUMMARY  

The purpose of the second behavioral experiment was to validate stimuli chosen 

for the main fMRI experiment to provide a baseline condition to control for the 

perceptual features of concept-property pairings chosen for the visual and haptic 

conditions.  Due to their lack of perceptual features, abstract concept-property pairings 

were created to be used in the baseline condition.  A behavioral experiment was 

conducted to select abstract stimuli which ensured the fMRI task was equally difficult 

across visual, haptic and abstract conditions.  The pool of 182 abstract concept-property 

pairings was narrowed down to a final set of 96 stimuli which received correct property 

verification responses from at least 75% of participants and whose mean reaction time 

across participants did not differ significantly from the mean reaction times of the visual 

and haptic conditions.  Therefore, the stimuli selected for the main experiment were 

determined to be equally difficult for visual, haptic, and abstract conditions, and 

differences between conditions cannot be explained by differences in task difficulty.   

 



www.manaraa.com

 

56 

CHAPTER 6 
 

FUNCTIONAL LOCALIZER 
 

6.1 PURPOSE 
 
 Embodied theories hypothesize that concepts are represented in the brain regions 

responsible for acquiring perceptual information about their referents.  These brain 

regions include primary and secondary perceptual areas as well as more anterior object-

selective regions.  The purpose of the main experiment was to determine whether these 

perceptual areas, those underlying visual and haptic perception, contain information 

about word stimuli with perceptual features.  Rather than define regions of interest by 

anatomy, which varies greatly across individuals, a functional localizer was designed to 

isolate regions functionally.  The functional localizer task was designed to isolate regions 

of the brain which underlie visual and haptic perception in general (primary and 

secondary visual and somatosensory areas) as well as regions which are selective for 

perceptual information pertaining to objects (LOC, FG, and IPS).   

6.2 MATERIALS & METHODS 
 
6.2.1 Participants 

Participants were 18 healthy adults (12 females) ranging in age from 18 to 33 

years (M = 23.6).  Participants were native speakers of English, right-handed with normal 

or corrected-to-normal vision and no history of neurological impairments.  All were 

recruited from the University of South Carolina community.  Informed consent was 
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obtained from each participant prior to the experiment, in accordance with the protocol 

set forth by the University of South Carolina Institutional Review Board.  

6.2.2 Stimuli 

A functional localizer was employed to localize visual and haptic object-selective 

regions. The protocol was similar to Kim and James (2010). Color photographs of 18 

objects and 18 textures were used for the visual object localizer run (Appendix A).  

Objects and textures were photographed from the same visual angle on a plain white 

background.  Texture photographs were cropped to display only the texture with no 

background.  All photographs were sized to 640 x 480 pixels.  Eighteen 3-dimensional 

objects encountered in everyday life (e.g., balloon, shoe, etc.) and eighteen 2-dimensional 

surface materials (e.g., sandpaper, bubble wrap, etc.) were used for the haptic object 

localizer run. All objects and surface materials were MR-compatible and selected such 

that they were able to be explored using two hands.  

6.2.3 Experimental paradigm 

In the functional localizer, participants were presented with an object or texture 

one at a time and asked to covertly name the object or texture.  Prior to the day of the 

experiment, participants practiced the functional localizer task in a mock scanner using 

different objects and textures to familiarize the participants with the procedure and to 

ensure the participants could perform the task without excessive head motion.  

Participants received a list of the names of objects and textures to be used in the real 

functional localizer but were not allowed to interact with them until scanning.  This 

ensured that participants could accurately name the objects and textures but would not 

rely on their memory of the objects and textures for the purpose of identification.   
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6.3 IMAGE ACQUISITION & PREPROCESSING 

  Functional images were acquired on a Siemens Magnetom Trio 3.0T scanner 

(Siemens, Erlangen, Germany) at the McCausland Center for Brain Imaging at the 

University of South Carolina.  For the functional localizer, images were acquired using a 

gradient echo EPI pulse sequence (TR = 2200 ms, TE = 35 ms, flip angle = 90°).  Thirty-

six 3 mm thick oblique-axial slices were imaged with a 0.6 mm interslice gap, covering 

the whole brain, resulting in 3.0 x 3.0 x 3.0 mm voxels.  Anatomical images of the entire 

brain were obtained using a standard T1-weighted 3D MP-RAGE protocol (TR = 2250 

ms, TE = 4.15 ms, flip angle = 9°, voxel size = 1.0 x 1.0 x 1.0 mm).   

 Data preprocessing and the univariate statistical analysis was performed using 

Statistical Parametric Mapping 8 software (Wellcome Department of Cognitive 

Neurology, London, UK).  The data was corrected for slice timing, motion, and linear 

trend, and a high-pass filter was applied (0.008Hz cut off).  Functional images were 

spatially normalized to MNI space using a 12-parameter affine transformation and co-

registered to the participant’s anatomical image.  Spatial smoothing was utilized for the 

univariate statistical analyses only with a Gaussian filter of 8 mm full-width-half-

maximum.   

For the univariate statistical analysis, a general linear model (GLM) was fit at 

each voxel using the canonical hemodynamic response function (HRF) convolved with 

onsets for each experimental condition, including six motion parameters as nuisance 

regressors.  In order to isolate brain regions that process the visual and haptic features of 

objects, the following contrasts were computed: VO – VT (visual object-selective), HO – 

HT (haptic object-selective), and VO + HO – VT + HT (object-selective for either visual 
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or haptic), V – Fixation (visual objects and textures), and H – Fixation (haptic objects and 

textures).  Additionally, for each participant, regions (cluster threshold of 5 voxels) 

showing significant activation differences (p < 0.001, unc.) for the five contrasts were 

used to create binary functional localizer masks.  A sixth localizer mask was created for 

each participant containing regions that showed activation differences for both visual and 

haptic objects and textures greater than fixation.  Functional localizer masks were used as 

regions of interest (ROIs) in subsequent analyses. 

6.4 RESULTS 

The purpose of the functional localizer task was to generate individual masks of 

functionally-localized regions for the main experiment; however, a group-level analysis 

was conducted to characterize which regions were represented.  A group-level analysis of 

the fMRI results of the functional localizer task shows activation in many of the predicted 

visual and haptic perceptual regions found in previous neuroimaging studies.  Table 6.1 

shows the peak coordinates for regions showing activation differences for the contrasts of 

interest.  

 
Table 6.1  Brain regions displaying significant (p < 0.05, FWE corrected) activation differences 
in functional localizer  
  Talairach 

Coordinates 
  

Condition Region BA x y z 
Voxel

s p value 

VO – VT L Mid Occipital Gyrus 19 -42 -76 5 15 < 0.001 

 L Inf Temporal Gyrus 37 -42 -68 -1   

HO – HT R Precuneus 7 21 -48 56 148 < 0.001 

 L Sup Parietal Lobule 7 -15 -50 61 53 < 0.001 
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 L Postcentral Gyrus 5 -24 -41 67   

 R Precuneus 19 36 -72 38 18 < 0.001 

 R Mid Frontal Gyrus 6 27 -1 38 38 < 0.001 

 L Mid Temporal Gyrus 37 -42 -59 -1 6 < 0.001 

VO + HO - VT + HT  R Mid Temporal Gyrus 37 45 -62 -4 22 < 0.001 

 L Postcentral Gyrus 2 -42 -36 58 21 < 0.001 

 R Postcentral Gyrus 7 15 -50 64 19 < 0.001 

 L Mid Temporal Gyrus 37 -42 -62 1 14 < 0.001 

 L Postcentral Gyrus 7 -12 -50 64 11 < 0.001 

 L Precuneus 7 -24 -75 43 10 < 0.001 

 L Inf Occipital Gyrus 19 36 -77 0 8 < 0.001 

V – Fixation L Mid Occipital Gyrus 18 -21 -91 5 1704 < 0.001 

 R Mid Occipital Gyrus 18 30 -80 0   

 R Lingual Gyrus 18 3 -80 2   

 L Sup Parietal Lobule 7 -30 -63 46 109 < 0.001 

 R Sup Frontal Gyrus 6 3 19 55 73 0.001 

 L Inf Frontal Gyrus 46 -48 29 8 36 0.005 

 L Mid Frontal Gyrus 46 -50 24 27 32 0.001 

 L Mid Frontal Gyrus 47 -45 42 -6 31 0.001 

 L Precentral Gyrus 6 -50 1 48 30 0.001 

 R Sup Parietal Lobule 7 33 -60 51 22 0.005 

 L Mid Temporal Gyrus 21 -56 -33 -3 16 0.001 
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al., 2007; Lacey et al., 2010; Lacey et al., 2009; Kassuba et al., 2013).  In addition to the 

LOC and FG, the visual and haptic features of objects were processed in BA 2, which 

includes the portion of the primary somatosensory cortex specializing in size and shape 

processing.  Size and shape are two object features that are largely bimodal.  One can see 

and feel the size and shape of an object.   

In addition to the FG and LOC, haptic features of objects activated the IPS and 

motor regions.  The IPS is a region bounded by BA 5 and BA 7, which is located at the 

convergence of visual and haptic streams of information and is thought to be a bimodal 

visual-haptic processing center (James et al., 2007; Kim & James, 2010).  Reflecting an 

increased requirement for movement planning, haptic features of objects activated the 

pre-motor cortex and supplementary motor areas.  This may be due to the fact that objects 

required more manipulation and rotation than textures to identify. 

Lateralization differences were found in the current study in comparison to Kim 

and James (2010).  Visual object processing was left-lateralized in the FG and LOC 

rather than bilateral.  In contrary, haptic object processing was bilateral in the LOC and 

IPS rather than left-lateralized.  However, activation in the motor areas for haptic objects 

was right-lateralized rather than bilateral.  The differences in lateralization between this 

study and the previous study may be due to minor differences in stimuli and/or method of 

presentation.  Stimuli were designed to be held comfortably in two hands and have 

discernible textures and shapes that could be easily recognized, but they were entirely 

different from the previous study.  Objects and textures were presented for haptic 

exploration to both hands, which leaves questions as to why activation may have been 

right-lateralized in motor areas.      
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 Processing visual stimuli, objects and textures, elicited activation in primary 

visual areas in addition to the IPS.  The activation of the IPS may be the result of 

secondary activation of the haptic representation of the objects and textures being seen, 

possibly to create a unified experience of the object or texture by imagining other 

perceptual features of the stimulus.  Other areas of the brain included the frontal eye 

fields, which may play a role in generating the contents of visual perception (Libedinsky 

& Livingstone, 2011).    

 Processing haptic stimuli, objects and textures, elicited activation in primary 

somatosensory areas in addition to the FG.  The activation of the FG may be the result of 

secondary activation of the visual representation of the objects and textures being 

touched.  Once again participants may have imagined the other perceptual features of 

stimuli to create a unified perceptual experience.  Other areas of the brain included the 

bilateral insula, implicated as a non-primary motor area responsive to finger movements 

(Fink et al., 1997).   

 In conclusion, the results of the functional localizer analysis indicate that touching 

and seeing objects elicits activation in object-selective perceptual regions, such as the 

LOC, FG, and IPS.  Touching and seeing objects and textures activates primary sensory 

areas in addition to some bimodal visual-haptic regions.  The latter presumably reflects 

that objects and textures may be imagined in other sense modalities to create a unified 

and more complete perceptual experience.   
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CHAPTER 7 

MAIN EXPERIMENT 

7.1 PURPOSE 

The purpose of the main experiment was to demonstrate that the representation of 

concepts with perceptual features is more consistent with weak and strong embodiment 

theories than unembodied and secondary embodiment theories.  The central hypothesis 

was that the neural representation of concepts with perceptual features is distributed and 

includes brain regions in the perceptual systems activated when interacting with the 

referent of that concept.  More specifically, concepts containing visual information 

should be represented in brain regions active when processing visual stimuli, while 

concepts containing haptic information should be represented in brain regions active 

when processing haptic stimuli.   

 The goals of the main experiment were two-fold.  The first goal was to examine 

which brain regions participate in processing concepts with visual and haptic features.  

The second goal was to determine whether information about the perceptual content of 

concepts is present in patterns of brain activity elicited by processing concepts with 

visual and haptic features.  To accomplish the first goal, we conducted a univariate 

analysis to investigate which brain regions respond more to processing concepts with 

visual or haptic features than concepts with more abstract features.  Additionally, we 

examined the patterns of functional connectivity of these regions to characterize the 

functional networks recruited to process concepts with perceptual features.  To 
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accomplish the second goal, we utilized MVPA to determine whether patterns of brain 

activity elicited by processing concepts can be used to predict the perceptual information 

content of a concept.    

7.2 MATERIALS & METHODS 

7.2.1 Participants 

Participants were 18 healthy adults (12 females) ranging in age from 18 to 33 

years (M = 23.6).  Participants were native speakers of English, right-handed with normal 

or corrected-to-normal vision and no history of neurological impairments.  All were 

recruited from the University of South Carolina community.  Informed consent was 

obtained from each participant prior to the experiment, in accordance with the protocol 

set forth by the University of South Carolina Institutional Review Board. 

7.2.2 Stimuli 

 A set of 192 visual and haptic concept-property word pairings were selected from 

a database of 774 multi-modal concept-property items from Dantzig, Cowell, Zeelenberg, 

and Pecher (2011).  Of the 192 visual concept-property pairings, 96 contained visual 

information, and 96 contained haptic information.  Concept-property pairings were rated 

for how strongly each is experienced with five sensory modalities (sight, sound, touch, 

smell and taste) through a series of norming studies.  The concept properties with the 

highest modality exclusivity ratings for vision and haptics were chosen to ensure stimuli 

were as unimodal as possible (threshold of 65% or higher for vision and 35% for haptics).  

Haptic stimuli are inherently more multi-modal, and the threshold for modality 

exclusivity reflects this.  Additionally, 96 abstract stimuli were constructed by choosing 

frequently used abstract nouns and pairing these with commonly used descriptors from a 
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thesaurus.  Word stimuli were balanced for average length (p = 0.351) and average 

frequency (p = 0.061). 

7.2.3 Questionnaire 

Following the main experiment participants completed the Vividness of Visual 

Imagery Questionnaire (VVIQ; Marks, 1973) to evaluate imagery ability.  This 

questionnaire consists of 16 questions with 5 response choices to evaluate the degree of 

clarity with which a participant is able to imagine a scenario.  Lower scores on the VVIQ 

indicate more vivid visual imagery.  Cui, Jeter, Yang, Montague, and Eagleman (2007) 

demonstrates that the vividness of mental imagery correlates with the activation levels in 

the visual cortex (r = -0.73, p = 0.04).  The questionnaire was administered after 

completing the main experiment to avoid influencing the participants to imagine the 

stimuli presented in the main experiment. 

7.2.4 Experimental paradigm 

During scanning participants performed a perceptual property verification task 

similar to tasks used in behavioral and neuroimaging studies of conceptual processing 

(Goldberg et al., 2006; Pecher, Zeelenberg, & Barsalou, 2003).  On any given trial, 

participants were asked to decide which of two properties best described a concept from 

either the visual (V), haptic (H), or abstract (A) categories.  In the visual and haptic 

conditions, the two properties included perceptual features.  For example, given the 

concept “ZEBRA” and the visual properties “STRIPED” and “RED,” the participant 

would choose “STRIPED” as the applicable property, because a zebra can be striped but 

not red.  In the abstract condition, the two properties included non-perceptual features.  

For example, given the concept “LOSS” and the abstract properties “SAD” and 
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“SECURE,” the participant would choose “SAD” as the applicable property, because loss 

can make one feel sad but not secure.  This task was designed to prompt the participant to 

form a simulation of both the concept and its properties, which may involve sensory-

motor processing (Dantzig et al., 2011).  The number of times a property was used as the 

correct choice was balanced with the number of times it was used as the incorrect choice.  

Additionally, half of all trials had the correct choice listed on the right, while half had the 

correct choice listed on the left.   Property verification decisions were blocked by 

modality with four consecutive trials of each type.  The concept and property choices 

were presented for 3000 ms followed by a 1000 ms fixation cross (Figure 7.1).  Twenty-

four blocks of each modality type, 16 s in duration, were presented over two sessions.  

This number of blocks per condition is recommended for use with blocked designs to 

ensure enough trials for MVPA when temporally averaging normalized signal intensity 

values (Kamitani & Tong, 2005).  Fixation blocks were presented for 10 s each before 

and after each block to reduce overlap in the brain signal between experimental 

conditions.    

7.3 FMRI IMAGE ACQUISITION  

Functional images were acquired on a Siemens Magnetom Trio 3.0T scanner 

(Siemens, Erlangen, Germany) at the McCausland Center for Brain Imaging at the 

University of South Carolina.  For the main experiment, images were acquired using a 

gradient echo EPI pulse sequence (TR = 1100 ms, TE = 35 ms, flip angle =  64°).  

Eighteen 5.4 mm thick oblique-axial slices were imaged with a 0.54 mm interslice gap, 

covering the whole brain, resulting in 3.3 x 3.3 x 5.4 mm voxels.  Anatomical images of 
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7.4.1 Univariate analysis 

For the univariate statistical analysis, a general linear model (GLM) was fit at 

each voxel using the canonical hemodynamic response function (HRF) convolved with 

onsets for each experimental condition, including six motion parameters as nuisance 

regressors.  Spatial smoothing was utilized for the univariate statistical analyses only with 

a Gaussian filter of 8 mm full-width-half-maximum.   In order to isolate brain regions 

that process the visual and haptic features of word stimuli, the following contrasts were 

used: V+H – A (perceptual), V-A (visual), and H-A (haptic).   

7.4.2 Pattern classification 

The percent signal change (PSC) relative to the average activity in a voxel was 

computed for each voxel in every volume.  The mean PSC of six volumes, offset 4.4 

seconds (TR = 1.1 s) from the stimulus onset (to account for the delay in hemodynamic 

response), was used as the input for further analyses.  Furthermore, the mean PSC data 

for each voxel was standardized to have a mean of zero and variance of one.  

 Classifiers were trained to identify cognitive states from the pattern of brain 

activity (mean PSC) elicited by verifying the properties of concepts from three 

categories.  Two-category classification was performed to identify cognitive states 

associated with verifying concepts with visual or abstract, haptic or abstract, and visual or 

haptic, and visual and/or haptic or abstract features.  For classification, classifiers were 

defined as a function f: mean_PSC→ Yj, j = {1, …, k}, where k was the number of 

categories used for classification, Yj were categories of visual, haptic, or abstract features 

and where mean_PSC was a vector of mean PSC voxel activations.  
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Prior to classification, trials were divided into training and test sets, and relevant 

features (voxels) were extracted (see below for feature selection method) from the 

training set only.  The classifier was constructed using the selected features from the 

training set.  The classifier was applied subsequently to the unused test set and 

classification performance was evaluated with cross-validation. 

 To reduce the size of the data, a discriminative-based feature selection method 

was used.  For each fold of the data, a classifier was trained using the data from one voxel 

at a time to obtain a classification accuracy for discriminating between the two conditions 

of interest.  Voxels were ordered by classification accuracy, and the most discriminating 

voxels were chosen for classification.  The impact of retaining different numbers of 

voxels on each analysis was explored, rather than deciding upon an arbitrary threshold.  

A logistic regression classifier was used for classification (Bishop, 2006).  

Logistic regression is a widely used classifier that learns the function f: P (Y|X), where Y 

is discrete dependent variable, and X is a vector containing discrete or continuous 

variables. By using the maximum likelihood estimation, this algorithm estimates the 

probability of the given data belonging to an output category and classifies the data into 

the most probable category. As a classifier, logistic regression directly estimates its 

parameters from the training data.  Twenty-four fold cross-validation was used to 

evaluate classification performance, where each fold corresponded to one block of each 

of the conditions. Thus, the classifier was trained on 23 presentations and tested on one 

presentation.  Classification was repeated iteratively until each presentation served as the 

test set once.  Classification accuracies were computed based on the average 

classification accuracy across test folds.  As a result, classification accuracy was always 
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based upon the test data only, which remained disconnected from the training data.  

Classification procedures were conducted similarly to previous works investigating the 

neural representation of concepts (Baucom, Wedell, Wang, Blizter, & Shinkareva, 2012; 

Wang, Baucom & Shinkareva, 2012) 

If classification is successful, accuracies should be significantly different from the 

chance level accuracy, i.e. the accuracy of guessing. The significance of classification 

accuracy was evaluated based on the binomial distribution B(n, p), where n is the number 

of trials of each classification computation and p is the probability of correct 

classification when the exemplars are randomly labeled (Pereira et al., 2009).  

To determine whether visual and haptic object-selective regions carry information 

about the visual and haptic features of concepts, an ROI-based classification analysis was 

also performed.  A binary mask was generated for each participant by selecting for 

regions (cluster threshold of 5 voxels) showing significant activation differences for any 

of the three contrasts from the univariate analysis of the functional localizer data.  The 

binary mask was applied to the main experiment data and used as input for classification.  

Classification, feature selection, and cross-validation were conducted in the same manner 

as the whole brain pattern classification.  The significance of classification accuracy was 

evaluated based on the binomial distribution. 

To establish commonalities between participants’ neural representations of 

concepts with perceptual features, cross-participant classification was conducted.  Data 

from all but one participant were used to train a classifier to distinguish cognitive states 

associated with each experimental condition.  The classifier was then tested on the data of 

the left-out participant.  Classification was repeated iteratively until each participant’s 
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data served once as the test set.  The significance of classification accuracy was evaluated 

based on the binomial distribution. 

To investigate the consistency of informative voxels across individuals for cross-

participant classification, a voxel location probability map was generated across 

participants after convolving each voxel with a 4 mm Gaussian kernel (Kober et al., 

2008).  The probability map was further thresholded by a simulated null hypothesis 

distribution to control for multiple comparisons (FWE = 0.05).     

7.4.3 Functional connectivity  

 The task-related functional connectivity of brain regions was investigated in a 

similar manner to Rissman, Gazzaley, and D'Esposito (2004).  Following the univariate 

analysis of the functional localizer data, a “seed” region was selected to investigate how 

other brain regions interact with it during each condition of the main experiment.  The 

occipitotemporal cortex was selected to serve as the seed region, as it would be 

hypothesized to show differential activation for concepts with visual, haptic and abstract 

features based on the functional localizer.  This brain region was shown to be selective 

for objects with either visual or haptic features.  The seed region was identified separately 

for each participant in MNI space by masking the participant’s data with a binary ROI 

mask of the bilateral occipitotemporal cortex based on the Talairach Daemon database 

(Lancaster et al., 2000), generated with the WFU Pickatlas (Maldjian, Laurienti, Kraft & 

Burdette, 2003).  Next, the condition-specific beta values (or "beta series"; Rissman et al., 

2004) of each voxel in the brain was computed for each trial to estimate the magnitude of 

the task-related BOLD response.  The beta series averaged across the selected voxels in 

the seed region was correlated with the beta series of all other voxels in the brain to 



www.manaraa.com

 

78 

quantify the extent that each pair of voxels interacted with each other during each 

condition of the task.  The more highly correlated the voxels were, the greater the voxels 

interacted during the condition of the task.  Finally, the correlation coefficients were 

transformed to Fisher’s z-scores, mapped for each participant in MNI space, and 

submitted to a random effects group level analysis for each condition using Statistical 

Parametric Mapping 8 software (Wellcome Department of Cognitive Neurology, London, 

UK) to determine which correlation coefficients were significantly greater than zero.     

7.4.4 Connectivity-based MVPA 

Cross-participant MVPA was performed on the seed-based connectivity matrices 

using the occipitotemporal cortex as the seed region.  Pattern classification was used to 

test for cross-participant consistencies of the patterns for visual, haptic and abstract 

conditions.  A similarity-based classifier was trained on data from all but one participant 

to identify the connectivity matrices for the left out participant. Classification was 

performed iteratively until each participant’s data served as the test set once.  To reduce 

the size of the data, feature selection was used.  To select connections that responded to 

the experimental conditions, matrices in the training set were first transformed to Fisher’s 

z-scores. One sample t-tests against the null hypothesis of no response were then 

performed for each connection across all the participants in the training set for each 

condition separately. The connections with the highest t-values in either condition were 

selected jointly for both conditions, so that the feature selection was orthogonal to the 

classification categories.  

For the training set, weighted average matrices for each condition were generated 

by weighting each participant’s matrix by how similar they were to each other (Abdi, 
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Dunlop, & Williams, 2009; Shinkareva, Malave, Mason, Mitchell, & Just, 2011; 

Shinkareva, Ombao, Sutton, Mohanty, & Miller, 2006). Pairwise similarity between 

participants was measured by the RV coefficient (Robert & Escoufier, 1976), a 

multivariate generalization of the Pearson correlation coefficient to matrices. Each 

participant’s data were scaled by the first eigenvector of the similarity matrix to sum up 

to one. 

For each test matrix, the cosine similarity scores were computed, and the test 

matrix was labeled according to the training condition with the higher similarity score 

(Mitchell et al., 2008). When the hit score was higher than the miss score across the two 

conditions, classification was evaluated as successful. The overall classification 

accuracies were averaged across participants.  

7.5 UNIVARIATE ANALYSIS RESULTS 

The fMRI results of the main experiment show activation in many predicted brain 

regions found in previous neuroimaging studies of visual and haptic object perception 

and conceptual representation of words with visual and haptic features. Table 7.1 shows 

the peak coordinates for regions showing activation differences for the three contrasts of 

interest. 

Table 7.1  Brain regions displaying significant (p < 0.05, FWE corrected) activation 
differences in main experiment 
  Talairach Coordinates   

Condition Region BA x y z Voxels p value 

V + H – A L Fusiform Gyrus 20 -29 -36 -33 19 < 0.001 

 L Fusiform Gyrus 37 -51 -58 -12 5 0.003 
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number of active voxels across participants.  Feature selection thresholds were based on a 

set number of discriminative voxels within general visual, haptic, and visual-haptic ROIs.   

For regions which showed the greatest activation for visual or haptic objects, 

classification accuracies for classifying visual vs. abstract features exceeded chance level 

(0.50) for all levels of the most discriminative voxels (p < 0.05) for the majority of 

participants (Figure 7.5a).  The highest classification accuracy obtained for a single 

participant was 0.83.  Classification accuracies for classifying visual and haptic vs. 

abstract features exceeded chance level for the top 10% and 25% discriminative voxels 

only (Figure 7.5b).  The highest classification accuracy obtained for a single participant 

was 0.80.  Classification was unsuccessful in regions which showed the greatest 

activation for visual objects and haptic objects alone.  Classification accuracies were 

consistent across people for classifying visual vs. abstract and visual and haptic vs. 

abstract concepts, such that participants with the highest and lowest classification 

accuracies for one classification problem had the highest and lowest classification 

accuracies on the other (r = 0.811, p < 0.001).   

For regions which showed the greatest activation for visual or haptic objects, 

VVIQ scores and accuracies for classifying visual vs. abstract features showed a 

significant negative correlation, such that higher classification accuracies were associated 

with lower VVIQ scores (r = -0.424, p < 0.05; Figure 7.6).  Lower VVIQ scores indicate 

a participant’s ability to vividly imagine a scene. 
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and haptic vs. abstract features exceeded chance level (0.50) for most levels of the most 

discriminative voxels (p < 0.50) for the majority of participants (Figure 7.7).  The highest 

classification accuracy obtained for a single participant was 0.82 and 0.83 for visual vs. 

abstract and visual and haptic vs. abstract respectively.   

For regions which showed the greatest activation for both visual and haptic 

stimuli, objects and textures, classification accuracies for classifying visual vs. abstract 

features and visual and haptic vs. abstract features exceeded chance level (0.50) for all 

levels of the most discriminative voxels (p < 0.05) for the majority of participants (Figure 

7.7).  The highest classification accuracy obtained for a single participant was 0.83 for 

both classification problems.  Accurate classification was robust across the range of 

voxels used (from 25 to 400).  Classification accuracies for classifying haptic vs. abstract 

features exceeded chance level for most levels of the most discriminative voxels for the 

majority of participants (Figure 7.7).  The highest classification accuracy obtained for a 

single participant was 0.82.   

Participant classification accuracies showed consistency across classification 

problems within and across general perceptual regions as measured by correlation (Figure 

7.8).  Classification accuracies for visual vs. abstract and visual and haptic vs. abstract 

were consistent across participants within visual, haptic, and visual-haptic perceptual 

regions, while haptic vs. abstract was consistent with visual vs. abstract and visual and 

haptic vs. abstract within the visual-haptic perceptual regions only.  Classification 

accuracies for visual vs. abstract were consistent across all perceptual regions, while 

classification accuracies for visual and haptic vs. abstract were consistent across visual 



www.manaraa.com

 

and h

incon

Figur
visua
 

haptic percep

nsistent acro

 

 

re 7.7 Accur
al (red), hapt

ptual regions

ss all percep

racies for cla
ic (blue), an

s only.  Clas

ptual regions

assifying with
nd visual and

87 

sification ac

. 

hin regions r
d haptic (mag

ccuracies for

responsive t
genta) perce

r haptic vs. a

to processing
ptual feature

abstract were

g general 
es.   

e 

 



www.manaraa.com

 

 

Figur
probl
 

featur

classi

perce

has b

conce

which

abstra

7.6.2 

ident

  

re 7.8  Consi
lems and per

Due to the

res of conce

ification acc

eptual feature

been demons

epts (Wang, 

h successful

act and visua

Whole brain

A classifi

ify whether 

istency of pa
rceptual regi

e large numb

pts was poss

curacies were

es of concep

trated previo

Baucom & 

 classificatio

al and haptic

n classificati

er was traine

a concept co

articipant cla
ions measure

ber of region

sible, a contr

e the result o

pts.  BA 40 in

ously to not 

Shinkareva, 

on occurs.  C

c vs. abstract

ion 

ed for each p

ontained visu

88 

assification a
ed by correla

ns in which c

rol region w

of the classif

n the right h

contain info

2012) while

Classification

t was unsucc

participant to

ual, haptic o

accuracies ac
ation. 

classification

was tested to 

fier detecting

hemisphere w

ormation abo

e also being 

n of visual v

cessful in rig

o determine 

r abstract fe

cross classif

n of the perc

ensure signi

g informatio

was chosen, 

out concrete 

bounded by

vs. abstract, h

ght BA 40. 

if it was pos

atures based

 

fication 

ceptual 

ificant 

on about the 

because it 

or abstract 

y regions in 

haptic vs. 

ssible to 

d on whole 



www.manaraa.com

 

brain

were 

excee

discri

highe

confu

show

confu

Figur
featur
partic
by op
voxel

n activation e

based on a s

Classifica

eded chance 

iminative vo

est classifica

usion matrice

ws that the cla

using these w

re 7.9  Withi
res from wh
cipants, mea
pen circles, a
ls. 

elicited by ve

set number o

ation accurac

levels (0.33

oxels (p < 0.0

ation accurac

es, based on

assifier most

with visual fe

in-participan
hole brain pat
an accuracy s
are shown fo

erifying feat

of discrimina

cies for class

3) for the sma

05) for the m

cy for a singl

n 100 of the m

t often made

features (Figu

nt accuracies
tterns of acti
summarized 
or different s

89 

tures of conc

ative gray m

sifying visua

aller levels (

majority of p

le participan

most discrim

e errors when

ure 7.10).

s for classify
ivity.  Classi
by bars with

subsets of the

cepts.  Featur

matter voxels

al vs. haptic 

(from 25 to 2

participants (

nt was 0.68.  

minative vox

n classifying

ying visual v
ification acc
h individual 
e most discr

re selection 

. 

vs. abstract 

250) of the m

(Figures 7.9)

An examina

els, for each

g haptic featu

s. haptic vs. 
curacies acro

accuracies r
riminative gr

thresholds 

features 

most 

).  The 

ation of the 

h participant 

ures, 

 

abstract 
oss the 18 
represented 
ray matter 



www.manaraa.com

 

Figur
featur
for 10
visua
 

chanc

major

single

used 

chanc

voxel

accur

re 7.10  Parti
res from wh
00 most disc
al features. 

Classifica

ce level (0.5

rity of partic

e participant

(from 25 to 

Classifica

ce level (0.5

ls (p < 0.05)

racy obtained

icipant confu
hole brain pat
criminative v

ation accurac

0) for all lev

cipants (Figu

t was 0.85.  A

4000). 

ation accurac

0) for moder

 for the majo

d for a singl

usion matric
tterns of acti
voxels.  The 

cies for class

vels of the m

ure 7.11).  Th

Accurate cla

cies for class

rate levels (f

ority of parti

e participant

90 

ces for classi
ivity, ordere
classifier m

sifying visua

most discrimi

he highest cl

assification w

sifying hapti

from 100 to 

icipants (Fig

t was 0.82. 

ifying visual
ed by averag

most often con

al vs. abstrac

inative voxel

lassification

was robust a

ic vs. abstrac

400) of the m

gure 7.12).  T

l vs. haptic v
e accuracy a
nfuses hapti

ct features ex

ls (p < 0.05)

n accuracy ob

across the ran

ct features ex

most discrim

The highest 

vs. abstract 
across folds 
c features fo

xceeded 

) for the 

btained for a

nge of voxel

xceeded 

minative 

classificatio

or 

a 

ls 

n 



www.manaraa.com

 

Figur
whol
mean
circle

Figur
whol
mean
circle

re 7.11  With
e brain patte

n accuracy su
es, are shown

re 7.12  With
e brain patte

n accuracy su
es, are shown

hin-participa
erns of activi
ummarized b
n for differen

hin-participa
erns of activi
ummarized b
n for differen

ant accuracie
ity.  Classific
by bars with 
nt subsets of

ant accuracie
ity.  Classific
by bars with 
nt subsets of

91 

es for classif
cation accur
individual a

f the most di

es for classif
cation accur
individual a

f the most di

fying visual v
racies across
accuracies re
iscriminative

fying haptic 
racies across
accuracies re
iscriminative

 

vs. abstract 
s the 18 parti
epresented b
e gray matte

  

vs. abstract 
s the 18 parti
epresented b
e gray matte

features from
icipants, 

by open 
er voxels. 

features from
icipants, 

by open 
er voxels. 

m 

m 



www.manaraa.com

 

excee

for th

obtain

range

Figur
featur
partic
by op
voxel
 
 

abstra

activi

one c

other

   Classifi

eded chance 

he majority o

ned for a sin

e of voxels u

re 7.13  With
res from wh
cipants, mea
pen circles, a
ls. 

 
Classifica

act and visua

ity, such tha

classification

r (r = 0.715, p

cation accur

level (0.50)

of participan

ngle participa

used (from 2

hin-participa
hole brain pat
an accuracy s
are shown fo

ation accurac

al and haptic

t participant

n problem ha

p < 0.001).  

racies for cla

 for all level

nts (Figure 7.

ant was 0.84

5 to 4000).

ant accuracie
tterns of acti
summarized 
or different s

cies were con

c vs. abstract

ts with the hi

ad the highes

Classificatio

92 

assifying visu

ls of the mos

.13).  The hi

4.  Accurate 

es for classif
ivity.  Classi
by bars with

subsets of the

nsistent acro

t concepts fr

ighest and lo

st and lowes

on accuracie

ual and hapt

st discrimina

ighest classif

classificatio

fying visual a
ification acc
h individual
e most discr

oss people fo

rom whole b

owest classif

st classificati

es for haptic 

tic vs. abstra

ative voxels 

fication accu

on was robus

 

and haptic v
curacies acro

accuracies r
riminative gr

or classifying

brain pattern

fication accu

ion accuracie

vs. abstract 

act features 

(p < 0.05) 

uracy 

st across the 

vs. abstract 
oss the 18 
represented 
ray matter 

g visual vs. 

s of brain 

uracies for 

es on the 

were not 



www.manaraa.com

 

93 

statistically correlated with classification accuracies for visual vs. abstract or visual and 

haptic vs. abstract.   

7.6.3 Cross-participant classification 

 To examine the consistency of the neural representations of concepts with 

perceptual features across participants, whole brain activation data from all but one 

participant were used to identify the category of stimuli presented to the left-out 

participant.  A classifier was trained on the data from all but one participant and tested on 

the data from the left-out participant.  Feature selection thresholds were based on a set 

number of discriminative gray matter voxels common to all participants.  The highest 

accuracy for classifying visual vs. abstract features obtained for any voxel level was 0.70 

(compared to 0.50 chance level).  Classification accuracies for classifying visual vs. 

abstract features were significant for some levels of the most discriminative voxels (p < 

0.05) for the majority of participants (Figure 7.14). 

A classifier was trained on the combined data from all but one participant to 

identify haptic vs. abstract features for the left-out participant.  The highest accuracy for 

classifying haptic vs. abstract features obtained for any voxel level was 0.75.  

Classification accuracies for classifying haptic vs. abstract features were significant for 

most levels of the most discriminative voxels (p < 0.05) for the majority of participants 

(Figure 7.15).   

A classifier was trained on the combined data from all but one participant to 

identify visual and haptic vs. abstract features for the left-out participant.  The highest 

accuracy for classifying visual and haptic vs. abstract features obtained for any voxel 

level was 0.78.  Classification accuracies for classifying visual and haptic vs. abstract 
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identify the functional network of the left-out participant.  A classifier was trained on the 

data from all but one participant and tested on the data from the left-out participant.  

Classification was significantly above chance for classifying visual vs. haptic functional 

networks with successful classification for 13 out of 18 participants (p < 0.05).  

Classification was at chance levels for classifying visual vs. abstract and haptic vs. 

abstract networks. 

7.7 SUMMARY 

 The first goal of the main experiment was to examine which brain regions 

participate in processing concepts with visual and haptic features.  A univariate analysis 

indicated that the FG is activated when processing both visual and haptic concepts, while 

the LOC is activated when processing haptic concepts.  These regions are known to be 

selective for processing the visual and haptic features of objects.  Next, the condition-

specific functional connectivity of the brain was investigated to characterize how brain 

regions interact when processing concepts with different types of features.  Seed-based 

networks were constructed to show how brain areas interacted with the occipitotemporal 

cortex during the visual, haptic, and abstract conditions.  The resulting functional 

networks were highly overlapping but showed differences in connectivity between visual 

and haptic networks across participants.  In comparison to the visual network, the haptic 

network showed greater connectivity between the premotor cortex and the 

occipitotemporal cortex.  The ability to classify the identity of functional networks across 

participants demonstrated that connectivity of the visual and haptic networks were 

quantitatively different as well. 
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The second goal was to determine whether information about the perceptual 

content of concepts is present in patterns of brain activity elicited by processing concepts 

with visual and haptic features.  We utilized MVPA to determine whether patterns of 

brain activity elicited by processing concepts can be used to predict the perceptual 

information content of a concept.  The results of classification demonstrated that 

information about the visual and haptic features of concepts was present in whole brain 

patterns of brain activity, regions selective for the visual and haptic features of objects, 

and regions involved in general visual and haptic perception.  The conceptual 

representation of concepts with visual and haptic features was also consistent across 

people.  Unexpectedly, the neural representation of concepts with visual features could 

not be distinguished from the neural representation of concepts with haptic features in 

any areas of the brain.  Successful classification occurred only when decoding concepts 

with perceptual features versus abstract features.
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CHAPTER 8 

GENERAL DISCUSSION 

8.1 SUMMARY & IMPLICATIONS 

  This work investigated the neural representation of concepts with perceptual 

features, specifically visual and haptic, to understand how the perceptual aspects of 

concepts are represented.  The purpose was to demonstrate that the representation of 

concepts with perceptual features is more consistent with weak or strong embodiment 

theories than unembodied or secondary embodiment theories; however, it was beyond the 

scope of the current work to provide evidence that rules out amodal conceptual 

representation.  The central hypothesis was that the neural representation of concepts 

with perceptual features is distributed and includes brain regions in the perceptual 

systems activated when interacting with the referent of a concept.  More specifically, 

concepts containing visual information should be represented in brain regions active 

when processing visual stimuli, while concepts containing haptic information should be 

represented in brain regions active when processing haptic stimuli. 

8.1.1 Which brain regions participate in processing concepts with visual and haptic 

features? 

 The first goal of this work was to determine which brain regions participate in 

processing concepts with visual and haptic features.  Based on the literature examining 

visual and haptic object perception, we hypothesized that concepts with visual and haptic 

features elicit activity in regions known to be active when perceiving the visual and 
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haptic features of objects, such as the FG, LOC, and IPS, as well as general visual and 

haptic perceptual regions, such as the primary and secondary visual and somatosensory 

cortices.  A univariate analysis was employed to show which brain regions were on 

average activated to a greater extent when verifying the properties of concepts with one 

feature type over another.  A significant difference in average regional brain activation in 

one condition over another suggests a brain region’s involvement in a specific cognitive 

process.  The findings of the univariate analysis suggested two key brain regions were 

involved in processing the visual and haptic features of concepts, the FG and LOC.  The 

FG was implicated in processing both the visual and haptic features of concepts.  This 

area resides along the ventral stream of the visual system, which processes information 

regarding the identity of objects for the purpose of identifying and extracting meaning 

from stimuli (Ungerleider & Mishkin, 1982; Goodale & Milner, 1992).  Additionally, the 

FG is likely a region that unifies object-specific information from auditory, visual, and 

haptic modalities into a trisensory representation (Kassuba et al., 2011) with visual 

information showing primacy over haptic information (Kassuba et al., 2013).  

Furthermore, the FG has been demonstrated to be active for processing concrete concepts 

consistently across studies investigating the differences between abstract and concrete 

words (Wang et al., 2010).  The LOC was implicated in processing the haptic features of 

concepts.  The LOC is located at the convergence of visual and haptic streams of 

information and is thought to be a bimodal visuo-haptic processing center (Amedi et al, 

2005; Deshpande et al., 2010; James et al., 2005; James et al., 2007; Lacey et al., 2010; 

Lacey et al., 2009; Kassuba et al., 2013).  Since the LOC is bimodal, it was expected that 
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both the visual and haptic features of concepts would activate this region.  Univariate 

contrasts were constructed to compare perceptual features to abstract features, so this 

suggests that concepts with abstract features may have elicited activation in the LOC as 

well.  It was also expected that processing the visual and haptic features of concepts 

would elicit activation in the IPS; however, the IPS was not implicated by the univariate 

analysis.  The IPS is responsible for processing information regarding the geometric 

properties of objects, such as shape and size, which were under-represented by the stimuli 

used in the main experiment.  Geometric properties tend to be bimodal, and stimuli were 

chosen to be as unimodal as possible.  As such, texture and temperature features made up 

the bulk of the stimuli.  As hypothesized, the univariate analysis implied that visual and 

haptic object-selective regions are important for the representation of concepts with 

perceptual features.  The involvement of object-selective perceptual regions in conceptual 

representation provides support for weak embodiment theories, which predict regions 

anterior to primary perceptual systems underlie conceptual representation. 

The univariate analysis implicated two key regions in the neural representation of 

concepts with visual and haptic features.  Since brain regions do not act in isolation, an 

interesting question arises as to which other brain regions communicate with those 

identified as active during a cognitive task.  Seed-based functional connectivity is a novel 

approach to characterize which brain regions interact during a cognitive task and how this 

interaction changes across different experimental conditions (Rissmann et al., 2004).  

This work examined how the brain regions involved in processing concepts with visual 

and haptic features were functionally connected.  The hypothesis was that functional 
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networks for processing concepts with visual and haptic features contain similar brain 

regions, but these brain regions are connected differently based on the type of stimulus 

being processed.  The occipitotemporal cortex was used as a seed region, because it was 

identified by the univariate analysis and contains the LOC.  Seed-based functional 

networks were computed to examine which brain regions interacted with the 

occipitotemporal cortex during the visual and haptic conditions.  The visual and haptic 

functional networks were highly overlapping but showed some qualitative differences in 

connectivity.  An examination of the differences between the visual and haptic networks 

showed that the networks for verifying haptic features of concepts elicited stronger 

connections between the occipitotemporal cortex and the premotor cortex.  Previously, 

the LOC and premotor cortex were demonstrated to be functionally connected during 

haptic shape and texture perception (Deshpande, Hu, Stilla & Sathian, 2008).  In 

macaques, neurons in the premotor cortex show somatosensory responses characteristic 

of “mirror neurons,” which respond to both directing motor movements to explore by 

touch and watching others explore by touch (Rizzolatti, Luppino & Mattelli, 1998).  The 

finding of the current work suggests that the conceptual representation of concepts with 

haptic features reflects some aspects of the functional connectivity that occurs during 

haptic perception.  It is important to note that this finding is purely qualitative.  Without 

direct interaction tests, the result must be interpreted with caution.    To examine whether 

these networks were quantitatively different, a machine-learning algorithm was employed 

to classify the identity of connectivity maps across participants.  The classifier was able 

to discriminate between the visual and haptic networks for the majority of participants, 
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demonstrating quantitative differences between the networks for verifying the visual and 

haptic features of objects.  The results of the functional connectivity analysis are 

advantageous for characterizing how the interaction between brain regions changes 

across experimental conditions and provides a complementary approach to univariate 

analyses.  Taken together, we can conclude that object-selective regions are involved in 

the neural representation of concepts with visual and haptic features, and the connectivity 

of the occipitotemporal cortex to other brain regions changes based on which concepts 

are represented.  In the case of concepts with visual and haptic features, the neural 

representation of concepts with haptic features elicits stronger connectivity between the 

premotor cortex and the occipitotemporal cortex in comparison to the neural 

representation of concepts with visual features.  This may be due to the importance of 

integrating motor representations for haptic exploration of objects when representing 

concepts with haptic features.                 

The findings of the univariate and functional connectivity analyses have important 

implications for weak embodiment theories, which suggest that conceptual representation 

is dependent on sensory and motor systems.  Weak embodiment theories predict that 

processing concepts elicits activation in secondary perceptual areas rather than primary 

perceptual areas.  The univariate analysis and functional connectivity show that, indeed, 

secondary perceptual regions, such as the FG and LOC, are activated by processing 

concepts with perceptual features.  However, the results cannot speak to whether activity 

in these brain regions is required for the representation and understanding of concepts 

with perceptual features.  Activation in sensory and motor areas might be epiphenomenal, 
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arising as feedback from semantic processes in language areas.  The fMRI BOLD signal 

is too slow to characterize whether sensory regions receive input from or output to 

language processing areas.  As a result, fMRI studies alone cannot provide complete 

support for weak, or strong, embodiment theories.        

8.1.2  Do patterns of brain activity elicited by processing concepts carry information 

about their perceptual features? 

 As noted before, univariate analyses do not have the capacity to investigate the 

information present in the interaction between voxels.  Pattern-based approaches are 

complementary to univariate approaches, as they can reveal where in the brain 

information is represented by predicting the identity of stimuli from distributed and 

regional patterns of brain activity elicited by those stimuli.  The second goal of this work 

was to investigate where information about the visual and haptic features of concepts is 

represented.  The hypothesis was that the perceptual information content of a concept can 

be predicted from patterns of brain activity within functionally-defined regions of 

interest, object-selective and general perceptual regions, as well as from distributed 

patterns of whole brain activity.   

 Using MVPA this work demonstrated patterns of brain activity located within 

regions functionally-defined as important for processing the visual and haptic features of 

objects as well as for regions which process general visual and haptic perception carry 

information about the perceptual features of concepts.  Object-selective regions included 

the secondary somatosensory cortex, secondary visual cortex, and the LOC.  General 

perceptual regions included the primary visual and somatosensory cortices.  For all of 
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these regions, information about visual concepts and combined visual and haptic concepts 

could be discriminated from information about abstract concepts.  Information about 

haptic concepts could not be discriminated from abstract concepts within these regions, 

which suggests visual information drove successful classification accuracies.  The 

classifier tended to make errors by classifying concepts with haptic features as concepts 

with visual features, which may explain why classification accuracies for combined 

visual and haptic features were overall higher than visual features alone.  Unexpectedly, 

information about concepts with haptic features was not present in regions functionally-

defined for haptic perception.  This could be explained by the bimodal nature of haptic 

features, as the conceptual representation of concepts with haptic features may have been 

dominated by visual information.  This notion is supported by the fact that the conceptual 

representation of concepts with visual features was present in these haptic regions.  The 

regions in which classification of perceptual features from abstract features was 

successful replicated the previous findings of Wang et al. (2012), which decoded concrete 

and abstract words using different stimuli and a different experimental paradigm.       

 Whole brain patterns of brain activity also carried information about the 

perceptual features of concepts.  The conceptual representation of concepts with visual 

and haptic features was largely distributed throughout the cortex and was consistent 

across people.  Consistencies in the locations of voxels identified as most informative for 

cross-participant classification provide some clues about the nature of conceptual 

representation.  When classifying concepts with visual or haptic features alone from 

abstract concepts, voxels located in perceptual regions were consistently selected as most 
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informative across participants.  However, when classifying concepts with visual and 

haptic features combined from abstract concepts, a large cluster of voxels in the temporal 

poles, in addition to perceptual regions, was consistently selected as most informative 

across people.  The temporal poles have been suggested to be an amodal conceptual hub 

(Kiefer & Pulvermüller, 2012).  This finding indicates that amodal linguistic 

representation may be important for discriminating between concepts with combined 

visual and haptic features and concepts with abstract features in whole brain patterns 

activity, whereas visual information was selected as most informative when classifying 

within perceptual regions.  A limitation of the analysis of the consistency of informative 

voxels across participants is that within each participant, the most informative voxels are 

selected somewhat randomly due to the nature of logistic regression and is, therefore, not 

designed for speculating about the locations of selected voxels.  The speculation that 

consistency of the most informative voxels selected across people reflects amodal 

conceptual representation must be made with extreme caution.      

Unexpectedly, concepts with visual features could not be discriminated from 

concepts with haptic features in object-selective or general perceptual areas or whole 

brain patterns of activity.  Bimodality can explain why visual and haptic representations 

are not differentiable.  In normal individuals, haptic information is rarely experienced in 

the absence of visual information.  As such, when haptic information is presented without 

visual information, individuals tend to imagine the corresponding visual information.  

This is supported by the results of the functional localizer utilized in this work, as visual 

areas were activated when perceiving haptic stimuli.  Additionally, the modality ratings 
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of all stimuli in the database from which the stimuli were drawn for this work support 

that haptic stimuli are more bimodal than visual stimuli. 

A difficulty of MVPA lies in the ability to link the structure of class information 

decoded back to the experimental design.  In other words, are we really decoding the 

differences in the perceptual features of concepts?  In this work the perceptual features of 

concepts were manipulated to determine whether information about the perceptual 

features of concepts can be decoded from patterns of brain activity elicited by making 

property-verifications.  One way to establish a causal relationship is to correlate classifier 

performance with behavioral performance on a related measure.  Within object-selective 

regions, classifier performance was significantly correlated with participants’ ability to 

visually imagine a situation.  This suggests that perceptual information was indeed 

captured by the classifier.  Classification performance was not significantly correlated 

with mental imagery ability for general perceptual regions or whole brain; however, 

participants’ classification accuracies were generally consistent across all classification 

problems.  It cannot be ruled out that the classifier was capturing information regarding 

the lower-level features of stimuli.  Although stimuli were balanced on word length and 

frequency, both measures were calculated for each triple of words rather than for single 

words.  Additionally, word frequency was balanced across conditions as well as possible 

(p  = 0.145), but haptic stimuli showed a trend for being less frequent.  Additionally, it 

has been demonstrated that abstract concepts tend be more emotionally-valenced than 

concrete concepts (Kousta et al., 2011; Vigliocco et al., 2013).  The stimuli used in this 

work showed differences in mean emotional valence ratings, with visual stimuli showing 
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Overall, the implications of the MVPA results support aspects of both weak and 

strong embodiment theories while also providing evidence of amodal conceptual 

representation.  Weak embodiment theories are supported by the ability to classify 

concepts with perceptual features from regions involved in processing the perceptual 

features of objects.  Strong embodiment theories are supported by the ability to classify 

concepts with perceptual features from regions involved in general perceptual processing, 

as this suggests a full simulation is elicited when processing concepts.  A full simulation 

may be due to task-specific demands, which encourages participants to engage in mental 

imagery to complete a task.  Meteyard et al. (2012) proposes that the depth of processing 

must be taken into account to determine whether task demands induce mental imagery.  

Deeper processing (i.e. narrative comprehension) would elicit greater mental imagery 

than superficial processing (i.e. lexical decision).  This work utilized a property-

verification task, which required participants to decide whether a concept has one of two 

properties.  It has been demonstrated that reaction times for completing this task is 

influenced by factors that also influence perceptual processing (Dantzig et al., 2011).  

This suggests that participants may be engaging in a simulation of concepts.  Whether or 

not task demands elicit a full simulation of concepts is unclear and poses a limitation for 

this work.   

Several conclusions can be drawn from this work, which provide insight into the 

nature of the neural representation of concepts with perceptual features.  The neural 

representation of concepts with visual and haptic features involves brain regions which 

underlie general visual and haptic perception as well visual and haptic perception of 
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objects.  These brain regions interact differently based on the type of perceptual feature a 

concept possesses.  Additionally, the neural representation of concepts with visual and 

haptic features is distributed across the whole brain and is consistent across people.  The 

results of this work support aspects of weak/strong embodiment theories; however, the 

dependency of conceptual representation on these regions is beyond the scope of this 

work.  

8.2 FUTURE DIRECTIONS 

A limitation of this work was the inability to show full support for weak and 

strong embodiment theories.  Strong embodiment theories cannot be fully supported by 

this work, because modulation of sensory representation must be shown in two directions.  

This work demonstrates that processing concepts with perceptual features modulates 

sensory representation by eliciting activation in primary sensory regions, but full support 

of strong embodiment requires showing that influencing sensory representation also 

modulates conceptual representation.  All studies showing full support for strong 

embodiment theories have utilized action words to show that influencing the motor 

system modulates action word processing and vice versa (Buccino et al., 2005; 

Pulvermüller et al., 2005).  Future studies will need to replicate this finding in sensory 

systems to demonstrate that conceptual representation is grounded in both sensory and 

motor systems.  Both weak and strong embodiment theories propose that sensory and 

motor representations are required for conceptual representation; however, demonstrating 

this dependency was beyond the scope of this work.  Due to the nature of the fMRI 

BOLD signal, fMRI evidence is not sufficient to make this determination.  Neuroimaging 
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methods with higher temporal resolution, such as EEG, may be able to decouple 

feedforward and feedback effects to show whether sensory activation drives conceptual 

representation or is the output of semantic processing in language areas.  Additionally, 

TMS and lesion studies may provide evidence that sensory areas are required by showing 

deficits in semantic processing of concepts with visual and haptic features when sensory 

areas are lesioned or temporarily inhibited.  Previous studies have shown that lesions to 

visual and auditory association areas produce deficits in processing words with visual and 

auditory features (Neininger & Pulverüller, 2006; Trumpp et al., 2013); however no such 

study has investigated semantic processing of concepts with haptic features in patients 

with lesions to somatosensory areas.    

Finally, it has been suggested that emotional valence may play an important role 

in the neural representation of concepts with perceptual and abstract features (Kousta et 

al., 2011; Vigliocco et al., 2013).  Future work should aim to investigate how emotional 

valence contributes to the neural representation of concrete and abstract concepts, both 

across concepts and within sub-categories of concepts (i.e. visual, haptic, cognition or 

emotion).   

This work was novel, because previously MVPA has not been used to investigate 

the neural representation of concepts with perceptual features.  Future work should aim to 

replicate the current findings with stimuli of other modalities, such as auditory, olfactory, 

and gustatory, using MVPA.  Cross-modality MVPA, discriminating between different 

types of visual features within haptic areas and vice versa, would also be an interesting 

approach to further characterize the nature of modal representations.   
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Finally, it would be interesting to conduct this line of research on participants 

with deficits in perception to see whether sensory information is necessary for conceptual 

representation.  For example, one study investigating conceptual representation with 

sighted and congenitally blind participants showed that color knowledge contributes to 

similarity judgments for fruits and vegetables but not household objects in sighted 

participants (Connolly, Gleitman & Thompson-Schill, 2007).  Future work with special 

populations could elucidate which information is absolutely necessary for representing 

different types of concepts.  

8.3 MERIT & CONTRIBUTION 

 The current work was innovative, because no studies have examined how the 

brain represents concepts with visual and haptic features using MVPA.  The research 

strategy of this work employed state of the art quantitative methods to explore the 

information content and functional connectivity of patterns of brain activity elicited by 

concepts with visual and haptic features for the first time.  This strategy is more sensitive 

in comparison to the traditional univariate approach proposed in the first aim as it jointly 

investigates information in multiple voxels.  The outcome of this work served to further 

our understanding of how the brain represents concepts and provides support for weak 

embodiment theories. 
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